Find the best tutors and institutes for IIT JEE Coaching
Search in
CHEMISTRY
Physical Chemistry
General topics: Concept of atoms and molecules; Dalton’s atomic theory; Mole
concept; Chemical formulae; Balanced chemical equations; Calculations (based
on mole concept) involving common oxidation-reduction, neutralisation, and
displacement reactions; Concentration in terms of mole fraction, molarity,
molality and normality.
Gaseous and liquid states: Absolute scale of temperature, ideal gas equation;
Deviation from ideality, van der Waals equation; Kinetic theory of gases,
average, root mean square and most probable velocities and their relation with
temperature; Law of partial pressures; Vapour pressure; Diffusion of gases.
Atomic structure and chemical bonding: Bohr model, spectrum of hydrogen
atom, quantum numbers; Wave-particle duality, de Broglie hypothesis;
Uncertainty principle; Qualitative quantum mechanical picture of hydrogen
atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to
atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s rule;
Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals
only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen
bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR
model and shapes of molecules (linear, angular, triangular, square planar,
pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).
Energetics: First law of thermodynamics; Internal energy, work and heat,
pressure-volume work; Enthalpy, Hess’s law; Heat of reaction, fusion
vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion
of spontaneity.
Chemical equilibrium: Law of mass action; Equilibrium constant, Le Chatelier’s
principle (effect of concentration, temperature and pressure); Significance
in chemical equilibrium; Solubility product, common ion effect, pH and
buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of
salts.
Electrochemistry: Electrochemical cells and cell reactions; Standard electrode
potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf
of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance,
specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration
cells.
Chemical kinetics: Rates of chemical reactions; Order of reactions; Rate
constant; First order reactions; Temperature dependence of rate constant
(Arrhenius equation).
Solid state: Classification of solids, crystalline state, seven crystal systems (cell
parameters a, b, c, α, β, γ), close packed structure of solids (cubic), packing in
fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic
compounds, point defects.
Solutions: Raoult’s law; Molecular weight determination from lowering of
vapour pressure, elevation of boiling point and depression of freezing point.
Surface chemistry: Elementary concepts of adsorption (excluding adsorption
isotherms); Colloids: types, methods of preparation and general properties;
Elementary ideas of emulsions, surfactants and micelles (only definitions and
examples).
Nuclear chemistry: Radioactivity: isotopes and isobars; Properties of α, β and γ
rays; Kinetics of radioactive decay (decay series excluded), carbon dating;
Stability of nuclei with respect to proton-neutron ratio; Brief discussion on
fission and fusion reactions.
Inorganic Chemistry
Isolation/preparation and properties of the following non-metals: Boron, silicon,
nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of allotropes of
carbon (only diamond and graphite), phosphorus and sulphur.
Preparation and properties of the following compounds: Oxides, peroxides,
hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium,
potassium, magnesium and calcium; Boron: diborane, boric acid and borax;
Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid
(carbonic acid); Silicon: silicones, silicates and silicon carbide; Nitrogen: oxides,
oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid,
phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide;
Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium
thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine,
bleaching powder; Xenon fluorides.
Transition elements (3d series): Definition, general characteristics, oxidation
states and their stabilities, colour (excluding the details of electronic transitions)
and calculation of spin-only magnetic moment; Coordination compounds:
nomenclature of mononuclear coordination compounds, cis-trans and
ionisation isomerisms, hybridization and geometries of mononuclear
coordination compounds (linear, tetrahedral, square planar and octahedral).
Preparation and properties of the following compounds: Oxides and chlorides of
tin and lead; Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+; Potassium
permanganate, potassium dichromate, silver oxide, silver nitrate, silver
thiosulphate.
Ores and minerals: Commonly occurring ores and minerals of iron, copper, tin,
lead, magnesium, aluminium, zinc and silver.
Extractive metallurgy: Chemical principles and reactions only (industrial details
excluded); Carbon reduction method (iron and tin); Self reduction method
(copper and lead); Electrolytic reduction method (magnesium and aluminium);
Cyanide process (silver and gold).
Principles of qualitative analysis: Groups I to V (only Ag+
, Hg2+, Cu2+, Pb2+, Bi3+ Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate and sulphide.
Organic Chemistry
Concepts: Hybridisation of carbon; σ and π-bonds; Shapes of simple organic
molecules; Structural and geometrical isomerism; Optical isomerism of
compounds containing up to two asymmetric centres, (R,S and E,Z
nomenclature excluded); IUPAC nomenclature of simple organic compounds
(only hydrocarbons, mono-functional and bi-functional compounds);
Conformations of ethane and butane (Newman projections); Resonance and
hyperconjugation; Keto-enoltautomerism; Determination of empirical and
molecular formulae of simple compounds (only combustion method); Hydrogen
bonds: definition and their effects on physical properties of alcohols and
carboxylic acids; Inductive and resonance effects on acidity and basicity of
organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive
intermediates produced during homolytic and heterolytic bond cleavage;
Formation, structure and stability of carbocations, carbanions and free radicals.
Preparation, properties and reactions of alkanes: Homologous series, physical
properties of alkanes (melting points, boiling points and density); Combustion
and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and
decarboxylation reactions. Preparation, properties and reactions of alkenes and alkynes: Physical
properties of alkenes and alkynes (boiling points, density and dipole moments);
Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding
the stereochemistry of addition and elimination); Reactions of alkenes with
KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and
alkynes by elimination reactions; Electrophilic addition reactions of alkenes with
X2, HX, HOX and H2O (X=halogen); Addition reactions of alkynes; Metal
acetylides.
Reactions of benzene: Structure and aromaticity; Electrophilic substitution
reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and
acylation; Effect of o-, m- and p-directing groups in monosubstituted benzenes.
Phenols: Acidity, electrophilic substitution reactions (halogenation, nitration
and sulphonation); Reimer-Tieman reaction, Kolbe reaction.
Characteristic reactions of the following (including those mentioned above):
Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions,
nucleophilic substitution reactions; Alcohols: esterification, dehydration and
oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl,
conversion of alcohols into aldehydes and ketones; Ethers: Preparation by
Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime
and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro
reaction; haloform reaction and nucleophilic addition reactions (Grignard
addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester
hydrolysis; Amines: basicity of substituted anilines and aliphatic amines,
preparation from nitro compounds, reaction with nitrous acid, azo coupling
reaction of diazonium salts of aromatic amines, Sandmeyer and related
reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic
aromatic substitution in haloarenes and substituted haloarenes (excluding
Benzyne mechanism and Cine substitution).
Carbohydrates: Classification; mono- and di-saccharides (glucose and sucrose);
Oxidation, reduction, glycoside formation and hydrolysis of sucrose.
Amino acids and peptides: General structure (only primary structure for
peptides) and physical properties.
Properties and uses of some important polymers: Natural rubber, cellulose,
nylon, teflon and PVC.
Practical organic chemistry: Detection of elements (N, S, halogens); Detection
and identification of the following functional groups: hydroxyl (alcoholic and
phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro; Chemical
methods of separation of mono-functional organic compounds from binary
mixtures.
MATHEMATICS
Algebra
Algebra of complex numbers, addition, multiplication, conjugation, polar
representation, properties of modulus and principal argument, triangle
inequality, cube roots of unity, geometric interpretations.
Quadratic equations with real coefficients, relations between roots and
coefficients, formation of quadratic equations with given roots, symmetric
functions of roots.
Arithmetic, geometric and harmonic progressions, arithmetic, geometric and
harmonic means, sums of finite arithmetic and geometric progressions, infinite
geometric series, sums of squares and cubes of the first n natural numbers.
Logarithms and their properties.
Permutations and combinations, binomial theorem for a positive integral index,
properties of binomial coefficients.
Matrices as a rectangular array of real numbers, equality of matrices, addition,
multiplication by a scalar and product of matrices, transpose of a matrix,
determinant of a square matrix of order up to three, inverse of a square matrix
of order up to three, properties of these matrix operations, diagonal, symmetric
and skew-symmetric matrices and their properties, solutions of simultaneous
linear equations in two or three variables.
Addition and multiplication rules of probability, conditional probability, Bayes
Theorem, independence of events, computation of probability of events using
permutations and combinations.
Trigonometry
Trigonometric functions, their periodicity and graphs, addition and subtraction
formulae, formulae involving multiple and sub-multiple angles, general solution
of trigonometric equations.
Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle
formula and the area of a triangle, inverse trigonometric functions (principal
value only).
Analytical geometry
Two dimensions: Cartesian coordinates, distance between two points, section
formulae, shift of origin.
Equation of a straight line in various forms, angle between two lines, distance of
a point from a line; Lines through the point of intersection of two given lines,
equation of the bisector of the angle between two lines, concurrency of lines;
Centroid, orthocentre, incentre and circumcentre of a triangle.
Equation of a circle in various forms, equations of tangent, normal and chord.
Parametric equations of a circle, intersection of a circle with a straight line or a
circle, equation of a circle through the points of intersection of two circles and
those of a circle and a straight line.
Equations of a parabola, ellipse and hyperbola in standard form, their foci,
directrices and eccentricity, parametric equations, equations of tangent and
normal.
Locus problems.
Three dimensions: Direction cosines and direction ratios, equation of a straight
line in space, equation of a plane, distance of a point from a plane.
Differential calculus
Real valued functions of a real variable, into, onto and one-to-one functions,
sum, difference, product and quotient of two functions, composite functions,
absolute value, polynomial, rational, trigonometric, exponential and logarithmic
functions.
Limit and continuity of a function, limit and continuity of the sum, difference,
product and quotient of two functions, L’Hospital rule of evaluation of limits of
functions.
Even and odd functions, inverse of a function, continuity of composite functions,
intermediate value property of continuous functions.
Derivative of a function, derivative of the sum, difference, product and quotient
of two functions, chain rule, derivatives of polynomial, rational, trigonometric,
inverse trigonometric, exponential and logarithmic functions.
Derivatives of implicit functions, derivatives up to order two, geometrical
interpretation of the derivative, tangents and normals, increasing and
decreasing functions, maximum and minimum values of a function, Rolle’s
theorem and Lagrange’s mean value theorem.
Integral calculus
Integration as the inverse process of differentiation, indefinite integrals of
standard functions, definite integrals and their properties, fundamental
theorem of integral calculus.
Integration by parts, integration by the methods of substitution and partial
fractions, application of definite integrals to the determination of areas
involving simple curves.
Formation of ordinary differential equations, solution of homogeneous
differential equations, separation of variables method, linear first order
differential equations.
Vectors
Addition of vectors, scalar multiplication, dot and cross products, scalar triple
products and their geometrical interpretations.
PHYSICS
General Physics
Units and dimensions, dimensional analysis; least count, significant figures;
Methods of measurement and error analysis for physical quantities pertaining
to the following experiments: Experiments based on using Vernier calipers and
screw gauge (micrometer), Determination of g using simple pendulum, Young’s
modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal
length of a concave mirror and a convex lens using u-v method, Speed of sound
using resonance column, Verification of Ohm’s law using voltmeter and
ammeter, and specific resistance of the material of a wire using meter bridge
and post office box.
Mechanics
Kinematics in one and two dimensions (Cartesian coordinates only), projectiles;
Uniform circular motion; Relative velocity.
Newton’s laws of motion; Inertial and uniformly accelerated frames of
reference; Static and dynamic friction; Kinetic and potential energy; Work and
power; Conservation of linear momentum and mechanical energy.
Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic
collisions.
Law of gravitation; Gravitational potential and field; Acceleration due to gravity;
Motion of planets and satellites in circular orbits; Escape velocity.
Rigid body, moment of inertia, parallel and
https://www.urbanpro.com/assets/new-ui/sharing_job.pngPublished on 2018-06-22 15:03:05 by academics. Last Modified on 2018-06-22 15:03:05
How helpful was it?
How can we Improve it?
Please tell us how it changed your life *
Please enter your feedback
Recommended Articles
Top JEE Advanced Preparation Tips
If you have already made to the top list of 1,50,000 students in JEE Main exam, you have won half the battle of JEE exam. Now your mission is to clear the JEE Advanced to secure your place in one of the most reputed technology institutes in India -- the IITs. Clearing the JEE Main has helped you cover half the distance...
Get an Expert’s Guide and Tips to Make it...
An exclusive interview with Dr. Ashok Gopalakrishnan, CEO, Magnificient2 Software Services & Technology Inc. on approaching the JEE exam and how to make it to one of the IITs. Flexiguru.com: Flexiguru.com is an e-learning company offering flexible learning solutions that enhance teaching and learning. Launched with...
What are the important topics for IIT JEE...
With the passion to pursue engineering from a premier institute like IIT, a lot of students aim at cracking the IIT JEE to live this dream right from their 11th standard. Considered as one of the most difficult entrance exams across the globe, not many know how to prepare for JEE and lack correct guidance. Here we will...
UrbanPro.com helps you to connect with the best IIT JEE Coaching in India. Post Your Requirement today and get connected.
Find best tutors for IIT JEE Coaching Classes by posting a requirement.
Get started now, by booking a Free Demo Class