Find the best tutors and institutes for Class 9 Tuition
Search in
ABC is a triangle. Locate a point in the interior of ΔABC which is equidistant from all the vertices of ΔABC.
Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together.
In ΔABC, we can find the circumcentre by drawing the perpendicular bisectors of sides AB, BC, and CA of this triangle. O is the point where these bisectors are meeting together. Therefore, O is the point which is equidistant from all the vertices of ΔABC
In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.
The point that is equidistant from all sides of a triangle is known as the incentre of the triangle. It is basically an intersection point of the angle bisectors of the interior angles of that triangle.
Here, in ΔABC, we can find the incentre of this triangle by drawing the angle bisectors of the interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. Therefore, I is the point equidistant from all the sides of ΔABC.
In a huge park people are concentrated at three points (see the given figure)
A: where there are different slides and swings for children,
B: near which a man-made lake is situated,
C: which is near to a large parking and exit.
Where should an ice-cream parlour be set up so that maximum number of persons can approach it?
(Hint: The parlor should be equidistant from A, B and C)
The maximum number of people can approach the ice-cream parlour if it is equidistant from A, B and C. Now, A, B and C form a triangle. In a triangle, the circumcentre is the only point that is equidistant from its vertices. So, the ice-cream parlour should be set up at the circumcentre O of ΔABC.
In this situation, maximum number of people can approach it. We can find circumcentre O of this triangle by drawing perpendicular bisectors of the sides of this triangle.
Complete the hexagonal and star shaped rangolies (see the given figures) by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?
It can be observed that hexagonal-shaped rangoli has 6 equilateral triangles in it.
Area of ΔOAB
Area of hexagonal-shaped rangoli
Star-shaped rangoli has 12 equilateral triangles of side 5 cm in it.
Area of star-shaped rangoli =
Therefore, star-shaped rangoli has more equilateral triangles in it.
How helpful was it?
How can we Improve it?
Please tell us how it changed your life *
Please enter your feedback
UrbanPro.com helps you to connect with the best Class 9 Tuition in India. Post Your Requirement today and get connected.
Find best tutors for Class 9 Tuition Classes by posting a requirement.
Get started now, by booking a Free Demo Class