UrbanPro
true

Find the best tutors and institutes for Class 9 Tuition

Find Best Class 9 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 7.3 with Free Lessons & Tips

AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
(i) AD bisects BC
(ii) AD bisects ∠ A.

(i) In ΔBAD and ΔCAD,

∠ADB = ∠ADC (Each 90º as AD is an altitude)

AB = AC (Given)

AD = AD (Common)

∴ΔBAD ≅ ΔCAD (By RHS Congruence rule)

⇒ BD = CD (By CPCT)

Hence, AD bisects BC.

(ii) Also, by CPCT,

∠BAD = ∠CAD

Hence, AD bisects ∠A.

Comments

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

In ΔBEC and ΔCFB,

∠BEC = ∠CFB (Each 90°)

BC = CB (Common)

BE = CF (Given)

∴ ΔBEC ≅ ΔCFB (By RHS congruency)

⇒ ∠BCE = ∠CBF (By CPCT)

∴ AB = AC (Sides opposite to equal angles of a triangle are equal)

Hence, ΔABC is isosceles.

Comments

ABC is an isosceles triangle with AB = AC. Draw AP ⊥ BC to show that ∠ B = ∠ C.

In ΔAPB and ΔAPC,

∠APB = ∠APC (Each 90º)

AB =AC (Given)

AP = AP (Common)

∴ ΔAPB ≅ ΔAPC (Using RHS congruence rule)

⇒ ∠B = ∠C (By using CPCT)

Comments

Triangle ABC and triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the
same side of BC (see Figure). If AD is extended to intersect BC at P, show that
(i) triangleABD ≅ triangle ACD
(ii) triangle ABP ≅ triangle ACP
(iii) AP bisects ∠ A as well as ∠ D.
(iv) AP is the perpendicular bisector of BC.

(i) In ΔABD and ΔACD,

AB = AC (Given)

BD = CD (Given)

AD = AD (Common)

∴ ΔABD ≅ ΔACD (By SSS congruence rule)

⇒ ∠BAD = ∠CAD (By CPCT)

⇒ ∠BAP = ∠CAP …. (1)

(ii) In ΔABP and ΔACP,

AB = AC (Given)

∠BAP = ∠CAP [From equation (1)]

AP = AP (Common)

∴ ΔABP ≅ ΔACP (By SAS congruence rule)

⇒ BP = CP (By CPCT) … (2)

(iii) From equation (1),

∠BAP = ∠CAP

Hence, AP bisects ∠A.

In ΔBDP and ΔCDP,

BD = CD (Given)

DP = DP (Common)

BP = CP [From equation (2)]

∴ ΔBDP ≅ ΔCDP (By S.S.S. Congruence rule)

⇒ ∠BDP = ∠CDP (By CPCT) … (3)

Hence, AP bisects ∠D.

(iv) ΔBDP ≅ ΔCDP

∴ ∠BPD = ∠CPD (By CPCT) …. (4)

∠BPD + ∠CPD = 180 (Linear pair angles)

∠BPD + ∠BPD = 180

2∠BPD = 180 [From equation (4)]

∠BPD = 90 … (5)

From equations (2) and (5), it can be said that AP is the perpendicular bisector of BC.

Comments

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of â?? PQR (see Figure). Show that:
(i) triangle ABM ≅ triangle PQN
(ii) triangle ABC ≅ triangle PQR

(i) In ΔABC, AM is the median to BC.

∴ BM = BC

In ΔPQR, PN is the median to QR.

∴ QN = QR

However, BC = QR

∴ BC = QR

⇒ BM = QN … (1)

In ΔABM and ΔPQN,

AB = PQ (Given)

BM = QN [From equation (1)]

AM = PN (Given)

∴ ΔABM ≅ ΔPQN (SSS congruence rule)

∠ABM = ∠PQN (By CPCT)

∠ABC = ∠PQR … (2)

(ii) In ΔABC and ΔPQR,

AB = PQ (Given)

∠ABC = ∠PQR [From equation (2)]

BC = QR (Given)

⇒ ΔABC ≅ ΔPQR (By SAS congruence rule)

 

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 9 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 9 Tuition Classes?

Find best tutors for Class 9 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 9 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more