UrbanPro
true

Find the best tutors and institutes for Class 9 Tuition

Find Best Class 9 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 2.4 with Free Lessons & Tips

Determine which of the following polynomials has (x + 1) a factor : (i)  (ii)  (iii)  (iv)  

(i) If (x + 1) is a factor of p(x) = x3 + x2 + x + 1, then p (−1) must be zero, otherwise (x + 1) is not a factor of p(x).

p(x) = x3 + x2 + x + 1

p(−1) = (−1)3 + (−1)2 + (−1) + 1

= − 1 + 1 − 1 + 1 = 0

Hence, x + 1 is a factor of this polynomial.

(ii) If (x + 1) is a factor of p(x) = x4 + x3 + x2 + x + 1, then p (−1) must be zero, otherwise (x + 1) is not a factor of p(x).

p(x) = x4 + x3 + x2 + x + 1

p(−1) = (−1)4 + (−1)3 + (−1)2 + (−1) + 1

= 1 − 1 + 1 −1 + 1 = 1

As p(− 1) ≠ 0,

Therefore, x + 1 is not a factor of this polynomial.

(iii) If (x + 1) is a factor of polynomial p(x) = x4 + 3x3 + 3x2 + x + 1, then p(−1) must be 0, otherwise (x + 1) is not a factor of this polynomial.

p(−1) = (−1)4 + 3(−1)3 + 3(−1)2 + (−1) + 1

= 1 − 3 + 3 − 1 + 1 = 1

As p(−1) ≠ 0,

Therefore, x + 1 is not a factor of this polynomial.

(iv) If(x + 1) is a factor of polynomial p(x) = , then p(−1) must be 0, otherwise (x + 1) is not a factor of this polynomial.

As p(−1) ≠ 0,

Therefore, (x + 1) is not a factor of this polynomial.

Comments

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the
following cases: (i) p(x) = (ii)  (iii) p(x) =  

(i) If g(x) = x + 1 is a factor of the given polynomial p(x), then p(−1) must be zero.

p(x) = 2x3 + x2 − 2x − 1

p(−1) = 2(−1)3 + (−1)2 − 2(−1) − 1

= 2(−1) + 1 + 2 − 1 = 0

Hence, g(x) = x + 1 is a factor of the given polynomial.

(ii) If g(x) = x + 2 is a factor of the given polynomial p(x), then p(−2) must

be 0.

p(x) = x3 +3x2 + 3x + 1

p(−2) = (−2)3 + 3(−2)2 + 3(−2) + 1

= − 8 + 12 − 6 + 1

= −1

As p(−2) ≠ 0,

Hence, g(x) = x + 2 is not a factor of the given polynomial.

(iii) If g(x) = x − 3 is a factor of the given polynomial p(x), then p(3) must

be 0.

p(x) = x3 − 4 x2 + x + 6

p(3) = (3)3 − 4(3)2 + 3 + 6

= 27 − 36 + 9 = 0

Hence, g(x) = x − 3 is a factor of the given polynomial.

Comments

Find the value of k, if x – 1 is a factor of p(x) in each of the following cases: (i) p(x) =  (ii) p(x) = (iii) p(x) =  (iv) p(x) = 

If x − 1 is a factor of polynomial p(x), then p(1) must be 0.

(i) p(x) = x2 + x + k

p(1) = 0

⇒ (1)2 + 1 + k = 0

⇒ 2 + k = 0

⇒ k = −2

Therefore, the value of k is −2.

 

(ii) 

p(1) = 0

 

(iii) 

p(1) = 0

 

(iv) p(x) = kx2 − 3x + k

⇒ p(1) = 0

⇒ k(1)2 − 3(1) + k = 0

⇒ k − 3 + k = 0

⇒ 2− 3 = 0

Therefore, the value of k is.

Comments

Factorise : (i)  (ii)  (iii)  (iv) 

(i) 12x2 − 7x + 1

We can find two numbers such that pq = 12 × 1 = 12 and q = −7. They are p = −4 and = −3.

Here, 12x2 − 7x + 1 = 12x2 − 4− 3x + 1

= 4(3− 1) − 1 (3− 1)

= (3− 1) (4− 1)

(ii) 2x2 + 7x + 3

We can find two numbers such that pq = 2 × 3 = 6 and q = 7.

They are p = 6 and = 1.

Here, 2x2 + 7x + 3 = 2x2 + 6x + x + 3

= 2(+ 3) + 1 (+ 3)

= (x + 3) (2x+ 1)

(iii) 6x2 + 5x − 6

We can find two numbers such that pq = −36 and q = 5.

They are p = 9 and = −4.

Here,

6x2 + 5x − 6 = 6x2 + 9x − 4x − 6

= 3(2+ 3) − 2 (2+ 3)

= (2x + 3) (3− 2)

(iv) 3x2 − x − 4

We can find two numbers such that pq = 3 × (− 4) = −12

and q = −1.

They are p = −4 and = 3.

Here,

3x2 − x − 4 = 3x2 − 4x + 3x − 4

(3− 4) + 1 (3− 4)

= (3x − 4) (+ 1)

Comments

Factorise : (i)  (ii)  (iii)  (iv) 

(i) Let p(x) = x3 − 2x2 − x + 2

All the factors of 2 have to be considered. These are ± 1, ± 2.

By trial method,

p(−1) = (−1)3 − 2(−1)2 − (−1) + 2

= −1 − 2 + 1 + 2 = 0

Therefore, (x +1 ) is factor of polynomial p(x).

Let us find the quotient on dividing x3 − 2x2 − x + 2 by x + 1.

By long division,

It is known that,

Dividend = Divisor × Quotient + Remainder

∴ x3 − 2x2 − x + 2 = (x + 1) (x2 − 3x + 2) + 0

= (x + 1) [x2 − 2x − x + 2]

= (x + 1) [x (x − 2) − 1 (x − 2)]

= (x + 1) (x − 1) (x − 2)

= (x − 2) (x − 1) (x + 1)

(ii) Let p(x) = x3 − 3x2 − 9− 5

All the factors of 5 have to be considered. These are ±1, ± 5.

By trial method,

p(−1) = (−1)3 − 3(−1)2 − 9(−1) − 5

= − 1 − 3 + 9 − 5 = 0

Therefore, x + 1 is a factor of this polynomial.

Let us find the quotient on dividing x3 + 3x2 − 9− 5 by x + 1.

By long division,

It is known that,

Dividend = Divisor × Quotient + Remainder

∴ x3 − 3x2 − 9− 5 = (+ 1) (x2 − 4x − 5) + 0

= (+ 1) (x2 − 5x + x − 5)

(x + 1) [((x − 5) +1 (x − 5)]

= (x + 1) (x − 5) (x + 1)

= (x − 5) (x + 1) (x + 1)

(iii) Let p(x) = x3 + 13x2 + 32x + 20

All the factors of 20 have to be considered. Some of them are ±1,

± 2, ± 4, ± 5 ……

By trial method,

p(−1) = (−1)3 + 13(−1)2 + 32(−1) + 20

= − 1 +13 − 32 + 20

= 33 − 33 = 0

As p(−1) is zero, therefore, + 1 is a factor of this polynomial p(x).

Let us find the quotient on dividing x3 + 13x2 + 32x + 20 by (x + 1).

By long division,

It is known that,

Dividend = Divisor × Quotient + Remainder

x3 + 13x2 + 32x + 20 = (+ 1) (x2 + 12x + 20) + 0

= (+ 1) (x2 + 10x + 2+ 20)

= (x + 1) [x (+ 10) + 2 (+ 10)]

= (x + 1) (+ 10) (+ 2)

= (x + 1) (x + 2) (x + 10)

(iv) Let p(y) = 2y3 + y2 − 2y − 1

By trial method,

p(1) = 2 ( 1)3 + (1)2 − 2( 1) − 1

= 2 + 1 − 2 − 1= 0

Therefore, y − 1 is a factor of this polynomial.

Let us find the quotient on dividing 2y3 + y2 − 2y − 1 by y ­− 1.

p(y) = 2y3 + y2 − 2y − 1

= (− 1) (2y2 +3y + 1)

= (− 1) (2y2 +2y + y +1)

= (− 1) [2(+ 1) + 1 (+ 1)]

= (− 1) (+ 1) (2+ 1)

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 9 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 9 Tuition Classes?

Find best tutors for Class 9 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 9 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more