UrbanPro

Learn Data Science from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

How is data science different from traditional statistics?

Asked by Last Modified  

Follow 1
Answer

Please enter your answer

Data science and traditional statistics share commonalities but also have key differences in their approaches, goals, and methodologies. Here are some distinctions between data science and traditional statistics: Scope and Goals: Statistics: Traditional statistics primarily focuses on making inferences...
read more

Data science and traditional statistics share commonalities but also have key differences in their approaches, goals, and methodologies. Here are some distinctions between data science and traditional statistics:

  1. Scope and Goals:

    • Statistics: Traditional statistics primarily focuses on making inferences about a population based on a sample. It emphasizes hypothesis testing, estimating parameters, and drawing conclusions about relationships within the data.
    • Data Science: Data science has a broader scope and incorporates various techniques to extract insights, patterns, and knowledge from data. It encompasses statistical methods but extends beyond them to include machine learning, data engineering, and other disciplines.
  2. Data Handling:

    • Statistics: Often relies on well-defined, clean datasets with a clear research question in mind. Emphasizes statistical methods for hypothesis testing and parameter estimation.
    • Data Science: Involves working with large, messy datasets, often collected from diverse sources. Data scientists focus on cleaning, preprocessing, and wrangling data to make it suitable for analysis. Data science encompasses a wider array of tasks, including feature engineering and handling unstructured data.
  3. Exploratory vs. Confirmatory Analysis:

    • Statistics: Typically involves confirmatory analysis, where researchers have a specific hypothesis to test. Statistical tests are designed to confirm or reject a predetermined hypothesis.
    • Data Science: Emphasizes exploratory data analysis (EDA), where the goal is to discover patterns, relationships, and trends within the data. EDA is often used to generate hypotheses that can be further tested.
  4. Tools and Technologies:

    • Statistics: Relies on traditional statistical methods, often implemented using statistical software like R or SAS.
    • Data Science: Utilizes a broader set of tools, including statistical programming languages (e.g., R, Python), machine learning frameworks (e.g., TensorFlow, scikit-learn), big data technologies (e.g., Hadoop, Spark), and data visualization tools.
  5. Modeling Techniques:

    • Statistics: Commonly uses classical statistical models such as linear regression, ANOVA, and t-tests.
    • Data Science: Encompasses a wider range of modeling techniques, including traditional statistical models as well as machine learning algorithms like decision trees, support vector machines, neural networks, and deep learning approaches.
  6. Problem Solving Approach:

    • Statistics: Often applied to answer specific research questions or test hypotheses formulated before data collection.
    • Data Science: Adopts a problem-solving approach that involves formulating and refining questions based on the data itself. The iterative nature of data science allows for continuous exploration and refinement of hypotheses.
  7. Domain Expertise:

    • Statistics: Often involves collaboration between statisticians and subject matter experts to formulate relevant hypotheses and interpret statistical results.
    • Data Science: Encourages a multidisciplinary approach where data scientists may need to have domain expertise to understand and interpret the context of the data.

In summary, while traditional statistics is a fundamental component of data science, data science represents a broader and more interdisciplinary field. Data scientists leverage a variety of techniques, tools, and technologies to extract meaningful insights from data, often working with large and complex datasets in real-world scenarios. The scope of data science extends beyond traditional statistical methods to include machine learning, data engineering, and other data-centric disciplines.

 
 
 
read less
Comments

Related Questions

Is that possible to do machine learning course after b.com,mba Finance and marketing? 

There will be 2.5L jobs will be created in Machine Leaning in next 3-5 years and there is so much demand in the market. I would suggest to you go for course for Business Analytics. There are course offered...
Priya
I have 2+ yrs working experience in BI domain. Can I pursue Data science for a job change? Will I get Job opportunity as per my experience or not in field of data science? R or python what to chose?
Hi Asish you can choose R or Python selecting programming tools is not criteria learning Deep Analytics is most important you should focus on Mathematicsfor (classification algorithms) statistics(EDA...
Asish
0 0
8
Hi, currently I am working as associate systems engineer. But I am really interested in data science. How can I become a data scientist. Please suggest me a path.
Let me comprehend based on my 20 years of working experience. You need to know few things to become a data scientist. 1) Statistics and Mathematics : It is like a doctor having good understanding of...
Vamsi

I want to learn data science in home itself bcz i dont want much time to take any coaching and also most of the institutes are asking high amount for  training. Pease lemme know how i can prepare myself.

First of all you start leaning following. 1.Database(Sql,Nosql) 2 Python,Pandas,Numpy 3 Basic Linux,Big Data(Hadoop,Scala,Spark) 4. Machine Learning 5. Deep Learning
Vishal

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons

13 Things Every Data Scientist Must Know Today
We have spent close to a decade in data science & analytics now. Over this period, We have learnt new ways of working on data sets and creating interesting stories. However, before we could succeed,...

Mathematics used in various Machine learning concepts
Mathematics is the building block for data science. This blog focuses on various mathematical concepts that are used in machine learning. The mathematical concepts used for machine learning are categorized...

What is Time Series?
What is a Time Series? Time Series data is a series of data points indexed or listed or graphed with an equally spaced period. Time series forecasting is the use of the model to predict future values...

What it takes to become a Data Scientist?
Most of the research organizations and industry leading publications suggested a huge shortage of persons with deep Data Science skills. Also, increasing number of candidates are aspiring to become a Data...
D

Dni Institute

1 0
1

What Is R?
R is fast catching up as a must-know language because of the popularity of Data Science skill. R is a computer programming language which is particularly well suited to handling and sorting the large datasets...

Recommended Articles

Applications engineering is a hot trend in the current IT market.  An applications engineer is responsible for designing and application of technology products relating to various aspects of computing. To accomplish this, he/she has to work collaboratively with the company’s manufacturing, marketing, sales, and customer...

Read full article >

Microsoft Excel is an electronic spreadsheet tool which is commonly used for financial and statistical data processing. It has been developed by Microsoft and forms a major component of the widely used Microsoft Office. From individual users to the top IT companies, Excel is used worldwide. Excel is one of the most important...

Read full article >

Business Process outsourcing (BPO) services can be considered as a kind of outsourcing which involves subletting of specific functions associated with any business to a third party service provider. BPO is usually administered as a cost-saving procedure for functions which an organization needs but does not rely upon to...

Read full article >

Information technology consultancy or Information technology consulting is a specialized field in which one can set their focus on providing advisory services to business firms on finding ways to use innovations in information technology to further their business and meet the objectives of the business. Not only does...

Read full article >

Looking for Data Science Classes?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Data Science Classes?

The best tutors for Data Science Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Learn Data Science with the Best Tutors

The best Tutors for Data Science Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more