UrbanPro
true

Take Class 10 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Number Theory

Shreyan Saha
22/07/2020 0 0

In number theory, we deal only with integers and their properties. Many of you may have heard about this branch of mathematics but may not know much about it. Here I am going to introduce you to some of the basic concepts of this branch of mathematics. So, let's begin :)

One of the primary concepts essential for learning number theory is the divisibility of integers. The first of this list is Euclid's division algorithm which states that:

Given integers a and b with b>0, there exist unique integers q and r such that a=qb+r.

Well, this is what we have learnt while learning division—considering an integer a and an integer b if we divide a by b. we get a quotient and a remainder. In the above theorem, q is the quotient and r is the remainder. But the exciting thing is that such a representation of an integer is always unique, which is quite apparent. 

Let's see how can we use this property to solve some interesting problems. But before that, you all must be knowing that an even integer N can be written as N=2k where k is also an integer. If N is odd, it can be represented as N=2k+1.

Problem 1: For n≥1 establish that the integer M=n(7n+5) is divisible by6, where n is an integer.

Solution: What do you think? Isn't it interesting that a number of this form will always be divisible by 6 irrespective of what value we put in place of n, if we place 1, it's true, same for 2, same for any n? But seeing the form, you cannot tell that the number will be divisible by 6.

So, let's see how we can approach the problem.

M=n(7n+5) =n(6n+ n+6-1)=6n+ n+6n -n = (6n3+ 6n) + (n-n). Let me tell you how this helps. We needed to prove that that M is divisible by 6. So, I decided to take out those terms which have 6 as a factor. Quite clearly  (6n3+ 6n)  will be divisible by 6. We just need to prove that (n-n)  will be divisible by 6. 

Let's factorise (n-n). (n-n)=n(n+1)(n-1) . Now suppose we have a number and we divide it by 3, the possible remainders are 0,1 and 2. So we can write any integer in the following forms: 3k,3k+1,3k+2  where k is an integer. Let's see what happens if we replace n with these forms.

If n=3k. So, (n-n)=3k(3k+1)(3k-1). So, (n-n) is divisible by 3.

If n=3k+1, (n-n)=(3k+1)(3k+2)3k. So, (n-n) is divisible by 3.

If n=3k+2, (n-n)=(3k+2)(3k+3)(3k+1)=3(3k+2)(k+1)(3k+3) NOTE: HERE WE TOOK 3 COOMON FROM 3K+3. WE WROTE 3K+3=3*(k+1).  So, (n-n) is divisible by 3.

So, for all integers,  (n-n) is divisible by 3.

We also know that an integer is either odd or even. So, n-2k if n is even or n=2k+1 if n is odd.

If n is even, (n-n)=2k(2k+1)(2k-1) .So, (n-n) is divisible by 2.

If n is odd, (n-n)=2k+1(2k+2)2k. So, (n-n) is divisible by 2.

So, (n-n)  is divisible by both 2 and 3. So, (n-n)  is divisible by 2*3=6.

Hence, we have proved that M is divisible by 6.

0 Dislike
Follow 2

Please Enter a comment

Submit

Other Lessons for You


CHAPTER-10 CIRCLES NCERT SOLUTIONS
Exercise: 10.1 How many tangents can a circle have? Answer A circle can have infinite tangents. Fill in the blanks : (i) A tangent to a circle intersects it in ..................

How To Solve Compound Interest Sums?
The formula for Compound Amount: P n = P 2n = P 12n Also, A = CI + P Where, P= Principal R= Rate of Interest n=Time (in years) A= Amount CI= Compound Interest Solved Questions Questions...

VOLUME OF THE HEMI SPHERE
If, the radius of a Hemi sphere=r Then, VOLUME OF THE HEMI SPHERE=(2/3)πr3 Ex;- If,radius of a sphere=r=21cm VOLUME OF OF SPHERE=(2/3)πr3 ...

Mastering Simple Calculations, my way!
Did you ever wonder how you can master simple calculations? 37 + 49? let's add 3 to 37 making it 40 and then subtracting 3 from 49 making it 46. Here it is 46 + 40 = 86 which is same as 37 + 49 = 86. ...
D

Deleted User

3 0
0
X

Looking for Class 10 Tuition Classes?

The best tutors for Class 10 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 10 Tuition with the Best Tutors

The best Tutors for Class 10 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more