UrbanPro

Take Class 10 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

2. Prove that x2 – x is divisible by 2 for all positive integer x.

Asked by Last Modified  

1 Answer

Learn Euclid's Division Lemma

Follow 1
Answer

Please enter your answer

To prove that x2−xx2−x is divisible by 2 for all positive integer xx, we can use mathematical induction. Base Case: Let's start by checking the base case. When x=1x=1, x2−x=12−1=0x2−x=12−1=0. Since 0 is divisible by 2, the base case holds. Inductive Hypothesis:...
read more

To prove that x2−xx2−x is divisible by 2 for all positive integer xx, we can use mathematical induction.

Base Case: Let's start by checking the base case. When x=1x=1, x2−x=12−1=0x2−x=12−1=0. Since 0 is divisible by 2, the base case holds.

Inductive Hypothesis: Assume that x2−xx2−x is divisible by 2 for some positive integer kk, i.e., k2−kk2k is divisible by 2.

Inductive Step: We need to show that if the statement holds for kk, then it also holds for k+1k+1.

(k+1)2−(k+1)=k2+2k+1−k−1=k2+k=(k2−k)+k(k+1)2−(k+1)=k2+2k+1−k−1=k2+k=(k2k)+k

By the inductive hypothesis, we know that k2−kk2k is divisible by 2. And we know that kk is a positive integer, so kk is also divisible by 2 or it is an odd number.

  • If kk is divisible by 2, then k2−kk2k is divisible by 2, and kk is divisible by 2, so their sum (k2−k)+k(k2k)+k is also divisible by 2.

  • If kk is an odd number, then k2−kk2k is still divisible by 2, and when you add kk to it, you still get an even number, which is divisible by 2.

In both cases, (k+1)2−(k+1)(k+1)2−(k+1) is divisible by 2.

Therefore, by mathematical induction, we conclude that x2−xx2−x is divisible by 2 for all positive integers xx.

 
 
read less
Comments

Related Questions

Find the HCF of 52 and 117 and express it in form 52x + 117y.
From Euclid's division lemma,we know that a=bq+r,Since 117>52 ,we can take a=117 & b=52 Now,117=52*2+13(52 is divisor) so,52=13*4+0,the division process stops here,as the remainder becomes 0. Hence...
Sandhya
0 0
9

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons

Euclid's Division Lemma
Euclid's Division Lemma: Given positive integers a and b,there exist unique integers q and r satisfying a = bq + r, 0 ≤ r < b.Euclid’s division algorithm is based on this Lemma. Example:...

Recommended Articles

Mohammad Wazid is a certified professional tutor for class 11 students. He has 6 years of teaching experience which he couples with an energetic attitude and a vision of making any subject easy for the students. Over the years he has developed skills with a capability of understanding the requirements of the students. This...

Read full article >

Swati is a renowned Hindi tutor with 7 years of experience in teaching. She conducts classes for various students ranging from class 6- class 12 and also BA students. Having pursued her education at Madras University where she did her Masters in Hindi, Swati knows her way around students. She believes that each student...

Read full article >

Raghunandan is a passionate teacher with a decade of teaching experience. Being a skilled trainer with extensive knowledge, he provides high-quality BTech, Class 10 and Class 12 tuition classes. His methods of teaching with real-time examples makes difficult topics simple to understand. He explains every concept in-detail...

Read full article >

Quest Academy is a professional Bangalore based NEET and JEE (Main + Advanced) training institute. The academy was incorporated in 2015 to cater to the needs of students, who aim to crack competitive exams by connecting with the best brains around. The institute helps students enhance their skills and capabilities through...

Read full article >

Looking for Class 10 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 10 Tuition Classes?

The best tutors for Class 10 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 10 Tuition with the Best Tutors

The best Tutors for Class 10 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more