CONCEPTS AND FORMULAE TO RECOLLECT IN TRIGONOMETRY
1) sin2 A + cos2 A = 1
2) 1 + tan2A = sec2A
3) 1 + cot2A = cosec2A
COMPOUND ANGLE FOR FORMULAE :
- Sin(A+B) = sinAcosB + cosAsinB
- Sin(A-B) = sinAcosB – cosAsinB
- Cos(A+B) = cosAcosB – sinAsinB
- Cos (A-B) =cosAcosB + sinAsinB
- Tan(A+B) =(tanA + tanB )\(1-tanAtanB)
- Tan (A-B) =( tanA -tanB)\(1+tanAtanB)
- Cot (A+B) =( cotAcotB -1)\(cotA + cotB)
- Cot (A-B) =( cotAcotB +1) \( cotB-cotA)
WHEN A=B ,
- Sin2A = 2sinA cosA
- Cos2A = cos2A-sin2A =2cos2A-1 =1-2sin2A
- Tan2A = 2tanA\ 1-tan2A
- Cot 2A =( cot2A -1)\ 2cotA
- Cos2A =( 1+cos2A)\2
- Sin2A = ( 1-cos2A)\2
- Sin2A =2tanA\(1+tan2A)
- Cos2A =1-tan2A\(1+tan2A)
WHEN B=2A
1) Sin3A =3sinA – 4sin3A
2) Cos3A =4cos3A-3cosA
3) Tan3A=( 3tanA- tan3A)\(1-3tan2A)
SUM TO PRODUCT FORMULAE
1) SinA+SinB = 2sin(A+B)\2.cos(A-B)\2
2) SinA-sinB = 2cos(A+B)\2.sin(A-B)\2
3) cosA+cosB =2cos(A+B)\2.cos(A-B)\2
4) cosA-cos B =-2sin(A+B)\2.sin(A-B)\2
PRODUCT TO SUM FORMULAE
- 2sinAcosB = sin(A+B) + sin(A-B) = sin(sum) +sin(diff)
- 2cosA sinB = sin(A+B) – sin(A-B) =sin(sum) -sin(diff)
- 2cosA cosB = cos(A+B) + cos(A-B) = cos (sum) +cos(diff)
- 2sinA sinB = cos (A-B) -cos(A+B) =cos (diff) -cos(sum)
SOME SPECIAL FORMULAE
- Sin2A -sin2B = sin(A+B). sin(A-B) = cos2B- cos2A
- Cos2A – sin2B = cos(A+B). cos(A-B) =cos2B- sin2A
TRIG RATIOS OF SOME STANDARD ANGLES
- Sin 75 =( √3 +1) \2√2 = cos 15
- Cos75 =( √3-1)\2√2 = sin15
- Sin18 =( √5 – 1)\4 =cos 72
- Cos 36 = (√5 + 1)\4 = sin 54
HALF ANGLE FORMULAE
1) sin A = 2sinA\2 . cos A\2
2) cos A = cos2A\2 – sin2A\2 = 1- 2sin2A\2 = 2cos2A\2-1
3) TanA = 2tanA\2 \(1-tan2A\2)
4) sin2A\2 = (1-cosA)\2
5) Cos2A\2 = (1+cosA)\2
6) TanA\2 =√(1- cos A)\√(1+cosA)
7) sinA = 2tanA\2 \(1+tan2A\2)
8) CosA = (1-tan2A\2)\(1+tan2A\2)