Find the best tutors and institutes for Class 9 Tuition
Search in
In Figure, sides QP and RQ of â?? PQR are produced to points S and T respectively.
If ∠ SPR = 135° and ∠ PQT = 110°, find ∠ PRQ
It is given that,
∠SPR = 135º and ∠PQT = 110º
∠SPR + ∠QPR = 180º (Linear pair angles)
⇒ 135º + ∠QPR = 180º
⇒ ∠QPR = 45º
Also, ∠PQT + ∠PQR = 180º (Linear pair angles)
⇒ 110º + ∠PQR = 180º
⇒ ∠PQR = 70º
As the sum of all interior angles of a triangle is 180º, therefore, for ΔPQR,
∠QPR + ∠PQR + ∠PRQ = 180º
⇒ 45º + 70º + ∠PRQ = 180º
⇒ ∠PRQ = 180º − 115º
⇒ ∠PRQ = 65º
In Figure, ∠ X = 62°, ∠ XYZ = 54°. If YO and ZO are the bisectors of ∠ XYZ and ∠ XZY respectively of â?? XYZ, find ∠ OZY and ∠ YOZ
As the sum of all interior angles of a triangle is 180º, therefore, for ΔXYZ,
∠X + ∠XYZ + ∠XZY = 180º
62º + 54º + ∠XZY = 180º
∠XZY = 180º − 116º
∠XZY = 64º
∠OZY = = 32º (OZ is the angle bisector of ∠XZY)
Similarly, ∠OYZ = = 27º
Using angle sum property for ΔOYZ, we obtain
∠OYZ + ∠YOZ + ∠OZY = 180º
27º + ∠YOZ + 32º = 180º
∠YOZ = 180º − 59º
∠YOZ = 121º
In Figure, if AB || DE, ∠ BAC = 35° and ∠ CDE = 53°, find ∠ DCE.
AB || DE and AE is a transversal.
∠BAC = ∠CED (Alternate interior angles)
∴ ∠CED = 35º
In ΔCDE,
∠CDE + ∠CED + ∠DCE = 180º (Angle sum property of a triangle)
53º + 35º + ∠DCE = 180º
∠DCE = 180º − 88º
∠DCE = 92º
In Figure, if lines PQ and RS intersect at point T, such that ∠ PRT = 40°, ∠ RPT = 95° and ∠ TSQ = 75°, find ∠ SQT.
Using angle sum property for ΔPRT, we obtain
∠PRT + ∠RPT + ∠PTR = 180º
40º + 95º + ∠PTR = 180º
∠PTR = 180º − 135º
∠PTR = 45º
∠STQ = ∠PTR = 45º (Vertically opposite angles)
∠STQ = 45º
By using angle sum property for ΔSTQ, we obtain
∠STQ + ∠SQT + ∠QST = 180º
45º + ∠SQT + 75º = 180º
∠SQT = 180º − 120º
∠SQT = 60º
In Figure, if PQ ⊥ PS, PQ || SR, ∠ SQR = 28° and ∠ QRT = 65°, then find the values of x and y.
It is given that PQ || SR and QR is a transversal line.
∠PQR = ∠QRT (Alternate interior angles)
x + 28º = 65º
x = 65º − 28º
x = 37º
By using the angle sum property for ΔSPQ, we obtain
∠SPQ + x + y = 180º
90º + 37º + y = 180º
y = 180º − 127º
y = 53º
x = 37º and y = 53º
In Figure, the side QR of triangle PQR is produced to a point S. If the bisectors of ∠ PQR and ∠ PRS meet at point T, then prove that ∠ QTR = ∠ QPR.
In ΔQTR, ∠TRS is an exterior angle.
∠QTR + ∠TQR = ∠TRS
∠QTR = ∠TRS − ∠TQR (1)
For ΔPQR, ∠PRS is an external angle.
∠QPR + ∠PQR = ∠PRS
∠QPR + 2∠TQR = 2∠TRS (As QT and RT are angle bisectors)
∠QPR = 2(∠TRS − ∠TQR)
∠QPR = 2∠QTR [By using equation (1)]
∠QTR = ∠QPR
How helpful was it?
How can we Improve it?
Please tell us how it changed your life *
Please enter your feedback
UrbanPro.com helps you to connect with the best Class 9 Tuition in India. Post Your Requirement today and get connected.
Find best tutors for Class 9 Tuition Classes by posting a requirement.
Get started now, by booking a Free Demo Class