UrbanPro
true

Find the best tutors and institutes for Class 9 Tuition

Find Best Class 9 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 9.3 with Free Lessons & Tips

In Figure, E is any point on median AD of a â?? ABC. Show that ar (ABE) = ar (ACE).

AD is the median of ΔABC. Therefore, it will divide ΔABC into two triangles of equal areas.

∴ Area (ΔABD) = Area (ΔACD) ... (1)

ED is the median of ΔEBC.

∴ Area (ΔEBD) = Area (ΔECD) ... (2)

On subtracting equation (2) from equation (1), we obtain

Area (ΔABD) − Area (EBD) = Area (ΔACD) − Area (ΔECD)

Area (ΔABE) = Area (ΔACE)

Comments

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED)  ar(ABC) .

AD is the median of ΔABC. Therefore, it will divide ΔABC into two triangles of equal areas.

∴ Area (ΔABD) = Area (ΔACD)

⇒  ... (1)

In ΔABD, E is the mid-point of AD. Therefore, BE is the median.

∴ Area (ΔBED) = Area (ΔABE)

⇒ Area (ΔBED) = Area (ΔABD)

⇒ Area (ΔBED) = Area (ΔABC) [From equation (1)]

⇒ Area (ΔBED) = Area (ΔABC)

Comments

Show that the diagonals of a parallelogram divide it into four triangles of equal area.

We know that diagonals of parallelogram bisect each other.

Therefore, O is the mid-point of AC and BD.

BO is the median in ΔABC. Therefore, it will divide it into two triangles of equal areas.

∴ Area (ΔAOB) = Area (ΔBOC) ... (1)

In ΔBCD, CO is the median.

∴ Area (ΔBOC) = Area (ΔCOD) ... (2)

Similarly, Area (ΔCOD) = Area (ΔAOD) ... (3)

From equations (1), (2), and (3), we obtain

Area (ΔAOB) = Area (ΔBOC) = Area (ΔCOD) = Area (ΔAOD)

Therefore, it is evident that the diagonals of a parallelogram divide it into four triangles of equal area.

Comments

In Figure, ABC and ABD are two triangles on the same base AB. If line- segment CD is bisected by AB at O, show that ar(ABC) = ar (ABD).

Consider ΔACD.

Line-segment CD is bisected by AB at O. Therefore, AO is the median of

ΔACD.

∴ Area (ΔACO) = Area (ΔADO) ... (1)

Considering ΔBCD, BO is the median.

∴ Area (ΔBCO) = Area (ΔBDO) ... (2)

Adding equations (1) and (2), we obtain

Area (ΔACO) + Area (ΔBCO) = Area (ΔADO) + Area (ΔBDO)

⇒ Area (ΔABC) = Area (ΔABD)

Comments

D, E and F are respectively the mid-points of the sides BC, CA and AB of a â?? ABC.
Show that
(i) BDEF is a parallelogram.
(ii) ar (DEF) = ar (ABC)
(iii) ar (BDEF) = ar (ABC)

(i) In ΔABC,

E and F are the mid-points of side AC and AB respectively.

Therefore, EF || BC and EF = BC (Mid-point theorem)

However, BD = BC (D is the mid-point of BC)

Therefore, BD = EF and BD || EF

Therefore, BDEF is a parallelogram.

(ii) Using the result obtained above, it can be said that quadrilaterals BDEF, DCEF, AFDE are parallelograms.

We know that diagonal of a parallelogram divides it into two triangles of equal area.

∴Area (ΔBFD) = Area (ΔDEF) (For parallelogram BD)

Area (ΔCDE) = Area (ΔDEF) (For parallelogram DCEF)

Area (ΔAFE) = Area (ΔDEF) (For parallelogram AFDE)

∴Area (ΔAFE) = Area (ΔBFD) = Area (ΔCDE) = Area (ΔDEF)

Also,

Area (ΔAFE) + Area (ΔBDF) + Area (ΔCDE) + Area (ΔDEF) = Area (ΔABC)

⇒ Area (ΔDEF) + Area (ΔDEF) + Area (ΔDEF) + Area (ΔDEF) = Area (ΔABC)

⇒ 4 Area (ΔDEF) = Area (ΔABC)

⇒ Area (ΔDEF) = Area (ΔABC)

(iii) Area (parallelogram BDEF) = Area (ΔDEF) + Area (ΔBDF)

⇒ Area (parallelogram BDEF) = Area (ΔDEF) + Area (ΔDEF)

⇒ Area (parallelogram BDEF) = 2 Area (ΔDEF)

⇒ Area (parallelogram BDEF) = Area (ΔABC)

⇒ Area (parallelogram BDEF) = Area (ΔABC)

Comments

In Figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD.
If AB = CD, then show that:
(i) ar (DOC) = ar (AOB)
(ii) ar (DCB) = ar (ACB)
(iii) DA || CB or ABCD is a parallelogram.
[Hint : From D and B, draw perpendiculars to AC.]

Let us draw DN ⊥ AC and BM ⊥ AC.

(i) In ΔDON and ΔBOM,

∠DNO = ∠BMO (By construction)

∠DON = ∠BOM (Vertically opposite angles)

OD = OB (Given)

By AAS congruence rule,

ΔDON ≅ ΔBOM

∴ DN = BM ... (1)

We know that congruent triangles have equal areas.

∴ Area (ΔDON) = Area (ΔBOM) ... (2)

In ΔDNC and ΔBMA,

∠DNC = ∠BMA (By construction)

CD = AB (Given)

DN = BM [Using equation (1)]

∴ ΔDNC ≅ ΔBMA (RHS congruence rule)

⇒ Area (ΔDNC) = Area (ΔBMA) ... (3)

On adding equations (2) and (3), we obtain

Area (ΔDON) + Area (ΔDNC) = Area (ΔBOM) + Area (ΔBMA)

Therefore, Area (ΔDOC) = Area (ΔAOB)

 

(ii) We obtained,

Area (ΔDOC) = Area (ΔAOB)

⇒ Area (ΔDOC) + Area (ΔOCB) = Area (ΔAOB) + Area (ΔOCB)

(Adding Area (ΔOCB) to both sides)

⇒ Area (ΔDCB) = Area (ΔACB)

 

(iii) We obtained,

Area (ΔDCB) = Area (ΔACB)

If two triangles have the same base and equal areas, then these will lie between the same parallels.

∴ DA || CB ... (4)

In ΔDOA and ΔBOC,

∠DOA = ∠BOC (Vertically opposite angles)

OD = OB (Given)

∠ODA = ∠OBC (Alternate opposite angles)

By ASA congruence rule,

ΔDOA ≅ ΔBOC

∴ DA = BC ... (5)

In quadrilateral ABCD, one pair of opposite sides is equal and parallel (AD = BC)

Therefore, ABCD is a parallelogram.

Comments

D and E are points on sides AB and AC respectively of â?? ABC such that ar (DBC) = ar (EBC). Prove that DE || BC.

Since ΔBCE and ΔBCD are lying on a common base BC and also have equal areas, ΔBCE and ΔBCD will lie between the same parallel lines.

∴ DE || BC

Comments

XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and F respectively, show that ar (ABE) = ar (ACF)

It is given that

XY || BC ⇒ EY || BC

BE || AC ⇒ BE || CY

Therefore, EBCY is a parallelogram.

It is given that

XY || BC ⇒ XF || BC

FC || AB ⇒ FC || XB

Therefore, BCFX is a parallelogram.

Parallelograms EBCY and BCFX are on the same base BC and between the same parallels BC and EF.

∴ Area (EBCY) = Area (BCFX) ... (1)

Consider parallelogram EBCY and ΔAEB

These lie on the same base BE and are between the same parallels BE and AC.

∴ Area (ΔABE) = Area (EBCY) ... (2)

Also, parallelogram BCFX and ΔACF are on the same base CF and between the same parallels CF and AB.

∴ Area (ΔACF) = Area (BCFX) ... (3)

From equations (1), (2), and (3), we obtain

Area (ΔABE) = Area (ΔACF)

Comments

The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see Figure). Show that ar (ABCD) = ar (PBQR).
[Hint : Join AC and PQ. Now compare ar (ACQ) and ar (APQ).]

Let us join AC and PQ.

ΔACQ and ΔAQP are on the same base AQ and between the same parallels AQ and CP.

∴ Area (ΔACQ) = Area (ΔAPQ)

⇒ Area (ΔACQ) − Area (ΔABQ) = Area (ΔAPQ) − Area (ΔABQ)

⇒ Area (ΔABC) = Area (ΔQBP) ... (1)

Since AC and PQ are diagonals of parallelograms ABCD and PBQR respectively,

∴ Area (ΔABC) = Area (ABCD) ... (2)

Area (ΔQBP) = Area (PBQR) ... (3)

From equations (1), (2), and (3), we obtain

Area (ABCD) = Area (PBQR)

Area (ABCD) = Area (PBQR)

 

Comments

Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O.
Prove that ar (AOD) = ar (BOC).

It can be observed that ΔDAC and ΔDBC lie on the same base DC and between the same parallels AB and CD.

∴ Area (ΔDAC) = Area (ΔDBC)

⇒ Area (ΔDAC) − Area (ΔDOC) = Area (ΔDBC) − Area (ΔDOC)

⇒ Area (ΔAOD) = Area (ΔBOC)

Comments

In Figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that
(i) ar (ACB) = ar (ACF)
(ii) ar (AEDF) = ar (ABCDE)

(i) ΔACB and ΔACF lie on the same base AC and are between

The same parallels AC and BF.

∴ Area (ΔACB) = Area (ΔACF)

(ii) It can be observed that

Area (ΔACB) = Area (ΔACF)

⇒ Area (ΔACB) + Area (ACDE) = Area (ACF) + Area (ACDE)

⇒ Area (ABCDE) = Area (AEDF)

Comments

A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat
of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

Let quadrilateral ABCD be the original shape of the field.

The proposal may be implemented as follows.

Join diagonal BD and draw a line parallel to BD through point A. Let it meet

the extended side CD of ABCD at point E. Join BE and AD. Let them intersect each other at O. Then, portion ΔAOB can be cut from the original field so that the new shape of the field will be ΔBCE. (See figure)

We have to prove that the area of ΔAOB (portion that was cut so as to construct Health Centre) is equal to the area of ΔDEO (portion added to the field so as to make the area of the new field so formed equal to the area of the original field)

It can be observed that ΔDEB and ΔDAB lie on the same base BD and are between the same parallels BD and AE.

∴ Area (ΔDEB) = Area (ΔDAB)

⇒ Area (ΔDEB) − Area (ΔDOB) = Area (ΔDAB) − Area (ΔDOB)

⇒ Area (ΔDEO) = Area (ΔAOB)

Comments

ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar (ADX) = ar (ACY). [Hint : Join CX.]

It can be observed that ΔADX and ΔACX lie on the same base AX and are between the same parallels AB and DC.

∴ Area (ΔADX) = Area (ΔACX) ... (1)

ΔACY and ΔACX lie on the same base AC and are between the same parallels AC and XY.

∴ Area (ΔACY) = Area (ACX) ... (2)

From equations (1) and (2), we obtain

Area (ΔADX) = Area (ΔACY)

Comments

In Figure, AP || BQ || CR. Prove that ar (AQC) = ar (PBR).

Since ΔABQ and ΔPBQ lie on the same base BQ and are between the same parallels AP and BQ,

∴ Area (ΔABQ) = Area (ΔPBQ) ... (1)

Again, ΔBCQ and ΔBRQ lie on the same base BQ and are between the same parallels BQ and CR.

∴ Area (ΔBCQ) = Area (ΔBRQ) ... (2)

On adding equations (1) and (2), we obtain

Area (ΔABQ) + Area (ΔBCQ) = Area (ΔPBQ) + Area (ΔBRQ)

⇒ Area (ΔAQC) = Area (ΔPBR)

Comments

Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar (AOD) = ar (BOC). Prove that ABCD is a trapezium.

It is given that

Area (ΔAOD) = Area (ΔBOC)

Area (ΔAOD) + Area (ΔAOB) = Area (ΔBOC) + Area (ΔAOB)

Area (ΔADB) = Area (ΔACB)

We know that triangles on the same base having areas equal to each other lie between the same parallels.

Therefore, these triangles, ΔADB and ΔACB, are lying between the same parallels.

i.e., AB || CD

Therefore, ABCD is a trapezium.

Comments

In Figure, ar (DRC) = ar (DPC) and ar (BDP) = ar (ARC). Show that both the
quadrilaterals ABCD and DCPR are trapeziums.

 

It is given that

Area (ΔDRC) = Area (ΔDPC)

As ΔDRC and ΔDPC lie on the same base DC and have equal areas, therefore, they must lie between the same parallel lines.

∴ DC || RP

Therefore, DCPR is a trapezium.

It is also given that

Area (ΔBDP) = Area (ΔARC)

⇒ Area (BDP) − Area (ΔDPC) = Area (ΔARC) − Area (ΔDRC)

⇒ Area (ΔBDC) = Area (ΔADC)

Since ΔBDC and ΔADC are on the same base CD and have equal areas, they must lie between the same parallel lines.

∴ AB || CD

Therefore, ABCD is a trapezium.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 9 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 9 Tuition Classes?

Find best tutors for Class 9 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 9 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more