UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Miscellaneous Exercise 2 with Free Lessons & Tips

If f(x) = x2, find.

Comments

The relation f is defined by

The relation g is defined by

Show that f is a function and g is not a function.

The relation f is defined as

It is observed that for

0 ≤ x < 3, f(x) = x2

3 < x ≤ 10, f(x) = 3x

Also, at x = 3, f(x) = 32 = 9 or f(x) = 3 × 3 = 9

i.e., at x = 3, f(x) = 9

Therefore, for 0 ≤ x ≤ 10, the images of f(x) are unique.

Thus, the given relation is a function.

The relation g is defined as

It can be observed that for x = 2, g(x) = 22 = 4 and g(x) = 3 × 2 = 6

Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6. Hence, this relation is not a function.

Comments

Find the domain of the function

The given function is.

It can be seen that function f is defined for all real numbers except at x = 6 and x = 2.

Hence, the domain of f is R – {2, 6}.

Comments

Find the domain and the range of the real function f defined by.

The given real function is.

It can be seen that is defined for (x – 1) ≥ 0.

i.e., is defined for x ≥ 1.

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of f = [1,).

As x ≥ 1 ⇒ (x – 1) ≥ 0 ⇒

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of f = [0,).

Comments

Find the domain and the range of the real function f defined by f (x) = |x – 1|.

The given real function is f (x) = |x – 1|.

It is clear that |x – 1| is defined for all real numbers.

∴Domain of f = R

Also, for xR, |x – 1| assumes all real numbers.

Hence, the range of f is the set of all non-negative real numbers.

Comments

Letbe a function from R into R. Determine the range of f.

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.

[Denominator is greater numerator]

Thus, range of f = [0, 1)

Comments

Let f, g: RR be defined, respectively by f(x) = x + 1, g(x) = 2x – 3. Find f + g, fg and.

f, g: RR is defined as f(x) = x + 1, g(x) = 2x – 3

(f + g) (x) = f(x) + g(x) = (x + 1) + (2x – 3) = 3x – 2

∴(f + g) (x) = 3x – 2

(f – g) (x) = f(x) – g(x) = (x + 1) – (2x – 3) = x + 1 – 2x + 3 = – x + 4

∴ (f – g) (x) = –x + 4

Comments

Let f = {(1, 1), (2, 3), (0, –1), (–1, –3)} be a function from Z to Z defined by f(x) = ax + b, for some integers a, b. Determine a, b.

f = {(1, 1), (2, 3), (0, –1), (–1, –3)}

f(x) = ax + b

(1, 1) ∈ f

f(1) = 1

a × 1 + b = 1

a + b = 1

(0, –1) ∈ f

f(0) = –1

a × 0 + b = –1

b = –1

On substituting b = –1 in a + b = 1, we obtain a + (–1) = 1 ⇒ a = 1 + 1 = 2.

Thus, the respective values of a and b are 2 and –1.

Comments

Let R be a relation from N to N defined by R = {(a, b): a, bN and a = b2}. Are the following true?

(i) (a, a) ∈ R, for all a N

(ii) (a, b) ∈ R, implies (b, a) ∈ R

(iii) (a, b) ∈ R, (b, c) ∈ R implies (a, c) ∈ R.

Justify your answer in each case.

R = {(a, b): a, bN and a = b2}

(i) It can be seen that 2 ∈ N;however, 2 ≠ 22 = 4.

Therefore, the statement “(a, a) ∈ R, for all a N” is not true.

(ii) It can be seen that (9, 3) ∈ N because 9, 3 ∈ N and 9 = 32.

Now, 3 ≠ 92 = 81; therefore, (3, 9) ∉ N

Therefore, the statement “(a, b) ∈ R, implies (b, a) ∈ R” is not true.

(iii) It can be seen that (16, 4) ∈ R, (4, 2) ∈ R because 16, 4, 2 ∈ N and 16 = 42 and 4 = 22.

Now, 16 ≠ 22 = 4; therefore, (16, 2) ∉ N

Therefore, the statement “(a, b) ∈ R, (b, c) ∈ R implies (a, c) ∈ R” is not true.

Comments

Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Are the following true?

(i) f is a relation from A to B (ii) f is a function from A to B.

Justify your answer in each case.

A = {1, 2, 3, 4} and B = {1, 5, 9, 11, 15, 16}

∴A × B = {(1, 1), (1, 5), (1, 9), (1, 11), (1, 15), (1, 16), (2, 1), (2, 5), (2, 9), (2, 11), (2, 15), (2, 16), (3, 1), (3, 5), (3, 9), (3, 11), (3, 15), (3, 16), (4, 1), (4, 5), (4, 9), (4, 11), (4, 15), (4, 16)}

It is given that f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product A × B.

It is observed that f is a subset of A × B.

Thus, f is a relation from A to B.

(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.

Comments

Let f be the subset of Z × Z defined by f = {(ab, a + b): a, bZ}. Is f a function from Z to Z: justify your answer.

When 1 value of y gets mapped from 2 values of X makes f a non function 

 

Let easy be the way when a+ b = 0 , a = -b 

ab = - a×a  which is multiple 

E.g. - 4 = -2× 2     -2 + 2 = 0

         -9 = -3×3     -3 + 3 = 0 

Hence this is many to one which is not a function 

Comments

Let A = {9, 10, 11, 12, 13} and let f: A → N be defined by f(n) = the highest prime factor of n. Find the range of f.

A = {9, 10, 11, 12, 13}

f: A → N is defined as

f(n) = The highest prime factor of n

Prime factor of 9 = 3

Prime factors of 10 = 2, 5

Prime factor of 11 = 11

Prime factors of 12 = 2, 3

Prime factor of 13 = 13

f(9) = The highest prime factor of 9 = 3

f(10) = The highest prime factor of 10 = 5

f(11) = The highest prime factor of 11 = 11

f(12) = The highest prime factor of 12 = 3

f(13) = The highest prime factor of 13 = 13

The range of f is the set of all f(n), where n ∈ A.

∴Range of f = {3, 5, 11, 13}

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more