UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 2.3 with Free Lessons & Tips

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

(iii) {(1, 3), (1, 5), (2, 5)}

(i) {(2, 1), (5, 1), (8, 1), (11, 1), (14, 1), (17, 1)}

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = {2, 5, 8, 11, 14, 17} and range = {1}

(ii) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)}

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = {2, 4, 6, 8, 10, 12, 14} and range = {1, 2, 3, 4, 5, 6, 7}

(iii) {(1, 3), (1, 5), (2, 5)}

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Comments

Find the domain and range of the following real function:

(i) f(x) = –|x| (ii)

(i) f(x) = –|x|, x ∈ R

We know that |x| =

Since f(x) is defined for xR, the domain of f is R.

It can be observed that the range of f(x) = –|x| is all real numbers except positive real numbers.

∴The range of f is (–, 0].

(ii)

Sinceis defined for all real numbers that are greater than or equal to –3 and less than or equal to 3, the domain of f(x) is {x : –3 ≤ x ≤ 3} or [–3, 3].

For any value of x such that –3 ≤ x ≤ 3, the value of f(x) will lie between 0 and 3.

∴The range of f(x) is {x: 0 ≤ x ≤ 3} or [0, 3].

Comments

A function f is defined by f(x) = 2x – 5. Write down the values of

(i) f(0), (ii) f(7), (iii) f(–3)

The given function is f(x) = 2x – 5.

Therefore,

(i) f(0) = 2 × 0 – 5 = 0 – 5 = –5

(ii) f(7) = 2 × 7 – 5 = 14 – 5 = 9

(iii) f(–3) = 2 × (–3) – 5 = – 6 – 5 = –11

Comments

The function ‘t’ which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by.

Find (i) t (0) (ii) t (28) (iii) t (–10) (iv) The value of C, when t(C) = 212

The given function is.

Therefore,

(i)

(ii)

(iii)

(iv) It is given that t(C) = 212

Thus, the value of t, when t(C) = 212, is 100.

Comments

Find the range of each of the following functions.

(i) f(x) = 2 – 3x, xR, x > 0.

(ii) f(x) = x2 + 2, x, is a real number.

(iii) f(x) = x, x is a real number

(i) f(x) = 2 – 3x, xR, x > 0

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

x

0.01

0.1

0.9

1

2

2.5

4

5

f(x)

1.97

1.7

–0.7

–1

–4

–5.5

–10

–13

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2.

i.e., range of f = (–, 2)

Alter:

Let x > 0

⇒ 3x > 0

⇒ 2 –3x < 2

f(x) < 2

∴Range of f = (–, 2)

(ii) f(x) = x2 + 2, x, is a real number

The values of f(x) for various values of real numbers x can be written in the tabular form as

x

0

±0.3

±0.8

±1

±2

±3

 

f(x)

2

2.09

2.64

3

6

11

 

…..

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2.

i.e., range of f = [2,)

Alter:

Let x be any real number.

Accordingly,

x2≥ 0

x2 + 2 ≥ 0 + 2

x2 + 2 ≥ 2

f(x) ≥ 2

∴ Range of f = [2,)

(iii) f(x) = x, x is a real number

It is clear that the range of f is the set of all real numbers.

∴ Range of f = R

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more