UrbanPro
true

Find the best tutors and institutes for Class 10 Tuition

Find Best Class 10 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 6.3 with Free Lessons & Tips

If AD and PM are medians of triangles ABC and PQR, respectively where , prove that .

It is given that ΔABC ∼ ΔPQR

We know that the corresponding sides of similar triangles are in proportion.

Also, ∠A = ∠P, ∠B = ∠Q, ∠C = ∠R … (2)

Since AD and PM are medians, they will divide their opposite sides.

From equations (1) and (3), we obtain

In ΔABD and ΔPQM,

∠B = ∠Q [Using equation (2)]

 (From equation iv)

∴ ΔABD ∼ ΔPQM (By SAS similarity criterion)

Comments

State which pairs of triangles in the given figures are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

(i) ∠A = ∠P = 60°

∠B = ∠Q = 80°

∠C = ∠R = 40°

Therefore, ΔABC ∼ ΔPQR [By AAA similarity criterion]

(iii)The given triangles are not similar as the corresponding sides are not proportional.

(iv) In ? MNL and ? QPR, 

v)The given triangles are not similar as the corresponding sides are not proportional.

(vi) In ΔDEF,

∠D +∠E +∠F = 180º

(Sum of the measures of the angles of a triangle is 180º.)

70º + 80º +∠F = 180º

∠F = 30º

Similarly, in ΔPQR,

∠P +∠Q +∠R = 180º

(Sum of the measures of the angles of a triangle is 180º.)

∠P + 80º +30º = 180º

∠P = 70º

In ΔDEF and ΔPQR,

∠D = ∠P (Each 70°)

∠E = ∠Q (Each 80°)

∠F = ∠R (Each 30°)

∴ ΔDEF ∼ ΔPQR [By AAA similarity criterion]

M = Q = 70°

?MNL ~ ?QPR  [By SAS similarity criterion]

Comments

In the figure, and . Find  and .

DOB is a straight line.

∴ ∠DOC + ∠COB = 180°

⇒ ∠DOC = 180° − 125°

= 55°

In ΔDOC,

∠DCO + ∠CDO + ∠DOC = 180°

(Sum of the measures of the angles of a triangle is 180º.)

⇒ ∠DCO + 70º + 55º = 180°

⇒ ∠DCO = 55°

It is given that ΔODC ∼ ΔOBA.

∴ ∠OAB = ∠ OCD [Corresponding angles are equal in similar triangles.]

⇒ ∠OAB = 55°

Comments

Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at the point O. Using a similarity criterion for two triangles, show that .

n ΔDOC and ΔBOA,

∠CDO = ∠ABO [Alternate interior angles as AB || CD]

∠DCO = ∠BAO [Alternate interior angles as AB || CD]

∠DOC = ∠BOA [Vertically opposite angles]

∴ ΔDOC ∼ ΔBOA [AAA similarity criterion]

  (Corresponding sides are proportional)

Comments

In the figure, and . Show that .

In ΔPQR, ∠PQR = ∠PRQ

∴ PQ = PR (i)

Given,

Using (i) we obtain

 using (ii)

 (SAS similarity)  

 

Comments

S and T are points on sides PR and QR of  such that . Show that .

In ΔRPQ and ΔRST,

∠RTS = ∠QPS (Given)

∠R = ∠R (Common angle)

∴ ΔRPQ ∼ ΔRTS (By AA similarity criterion)

Comments

In the figure, if , show that .

It is given that ΔABE ≅ ΔACD.

∴ AB = AC [By CPCT] (1)

And, AD = AE [By CPCT] (2)

In ΔADE and ΔABC,

 Dividing (2) by (1) 

∠A = ∠A [Common angle]

∴ ΔADE ∼ ΔABC [By SAS similarity criterion]

Comments

E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that .

n ΔABE and ΔCFB,

∠A = ∠C (Opposite angles of a parallelogram)

∠AEB = ∠CBF (Alternate interior angles as AE || BC)

∴ ΔABE ∼ ΔCFB (By AA similarity criterion)

Comments

In the given figure, ABC and AMP are two right triangles, right angled at B and M respectively.

Prove that:

(i)

(ii)

(i) In ΔABC and ΔAMP,

∠ABC = ∠AMP (Each 90°)

∠A = ∠A (Common)

∴ ΔABC ∼ ΔAMP (By AA similarity criterion)

 Corresponding sides of similar triangles are proportional. 

 

Comments

CD and GH are respectively the bisectors of  and  such that D and H lie on sides AB and FE of  and  respectively. If , show that:

(i)

(ii)

(iii)

It is given that ΔABC ∼ ΔFEG.

∴ ∠A = ∠F, ∠B = ∠E, and ∠ACB = ∠FGE

∠ACB = ∠FGE

∴ ∠ACD = ∠FGH (Angle bisector)

And, ∠DCB = ∠HGE (Angle bisector)

In ΔACD and ΔFGH,

∠A = ∠F (Proved above)

∠ACD = ∠FGH (Proved above)

∴ ΔACD ∼ ΔFGH (By AA similarity criterion)

In ΔDCB and ΔHGE,

∠DCB = ∠HGE (Proved above)

∠B = ∠E (Proved above)

∴ ΔDCB ∼ ΔHGE (By AA similarity criterion)

In ΔDCA and ΔHGF,

∠ACD = ∠FGH (Proved above)

∠A = ∠F (Proved above)

∴ ΔDCA ∼ ΔHGF (By AA similarity criterion)

Comments

In the figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If  and , prove that .

It is given that ABC is an isosceles triangle.

∴ AB = AC

⇒ ∠ABD = ∠ECF

In ΔABD and ΔECF,

∠ADB = ∠EFC (Each 90°)

∠ABD = ∠ECF (Proved above)

∴ ΔABD ∼ ΔECF (By using AA similarity criterion)

Comments

Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of (see the figure). Show that

Median divides the opposite side.

 and 

Given that,

In ΔABD and ΔPQM,

∴ ΔABD ∼ ΔPQM (By SSS similarity criterion)

⇒ ∠ABD = ∠PQM (Corresponding angles of similar triangles)

In ΔABC and ΔPQR,

∠ABD = ∠PQM (Proved above)

∴ ΔABC ∼ ΔPQR (By SAS similarity criterion)

 

Comments

D is a point on the side BC of a triangle ABC such that . Show that .

n ΔADC and ΔBAC,

∠ADC = ∠BAC (Given)

∠ACD = ∠BCA (Common angle)

∴ ΔADC ∼ ΔBAC (By AA similarity criterion)

We know that corresponding sides of similar triangles are in proportion.

Comments

Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that .

Given that,

Let us extend AD and PM up to point E and L respectively, such that AD = DE and PM = ML. Then, join B to E, C to E, Q to L, and R to L.

We know that medians divide opposite sides.

Therefore, BD = DC and QM = MR

Also, AD = DE (By construction)

And, PM = ML (By construction)

In quadrilateral ABEC, diagonals AE and BC bisect each other at point D.

Therefore, quadrilateral ABEC is a parallelogram.

∴ AC = BE and AB = EC (Opposite sides of a parallelogram are equal)

Similarly, we can prove that quadrilateral PQLR is a parallelogram and PR = QL, PQ = LR

It was given that

∴ ΔABE ∼ ΔPQL (By SSS similarity criterion)

We know that corresponding angles of similar triangles are equal.

∴ ∠BAE = ∠QPL … (1)

Similarly, it can be proved that ΔAEC ∼ ΔPLR and

∠CAE = ∠RPL … (2)

Adding equation (1) and (2), we obtain

∠BAE + ∠CAE = ∠QPL + ∠RPL

⇒ ∠CAB = ∠RPQ … (3)

In ΔABC and ΔPQR,

since 

∠CAB = ∠RPQ [Using equation (3)]

∴ ΔABC ∼ ΔPQR (By SAS similarity criterion)

Comments

A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Let AB and CD be a tower and a pole respectively.

Let the shadow of BE and DF be the shadow of AB and CD respectively.

At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.

Therefore, ∠DCF = ∠BAE

And, ∠DFC = ∠BEA

∠CDF = ∠ABE (Tower and pole are vertical to the ground)

∴ ΔABE ∼ ΔCDF (AAA similarity criterion)

Therefore, the height of the tower will be 42 metres.

 

Comments

In the figure, altitudes AD and CE of  intersect each other at the point P.

Show that:

(i) AEP ~ â?? CDP

(ii) â??ABD ~ â?? CBE

(iii) â??AEP ~ â??ADB

(iv) â?? PDC ~ â?? BEC

(i) 

In ΔAEP and ΔCDP,

∠AEP = ∠CDP (Each 90°)

∠APE = ∠CPD (Vertically opposite angles)

Hence, by using AA similarity criterion,

ΔAEP ∼ ΔCDP

 

(ii) 

In ΔABD and ΔCBE,

∠ADB = ∠CEB (Each 90°)

∠ABD = ∠CBE (Common)

Hence, by using AA similarity criterion,

ΔABD ∼ ΔCBE

 

(iii) 

In ΔAEP and ΔADB,

∠AEP = ∠ADB (Each 90°)

∠PAE = ∠DAB (Common)

Hence, by using AA similarity criterion,

ΔAEP ∼ ΔADB

 

(iv) 

In ΔPDC and ΔBEC,

∠PDC = ∠BEC (Each 90°)

∠PCD = ∠BCE (Common angle)

Hence, by using AA similarity criterion,

ΔPDC ∼ ΔBEC

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 10 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 10 Tuition Classes?

Find best tutors for Class 10 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 10 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more