UrbanPro

Learn Linear equations in 2 variables with Top Tutors

What is your location?

Please enter your locality

Are you outside India?

Back

Linear equations in 2 variables

Linear equations in 2 variables relates to CBSE/Class 9/Mathematics/Algebra

+ Follow 123,080

Top Tutors who teach Linear equations in 2 variables

1
Jayanagar, Bangalore
Super Tutor
15 yrs of Exp
500per hour
Classes: Class 10 Tuition, Vocal Music and more.

private teacher classes will be taken only for physics and chemistry

2
Akshay Aggarwal Class 10 Tuition trainer in Delhi Featured
Badarpur, Delhi
Super Tutor
10 yrs of Exp
750per hour
Classes: Class 10 Tuition, Class 8 Tuition and more.

3
Deepashree Class 10 Tuition trainer in Bangalore Featured
Basaveshwara Nagar, Bangalore
Super Tutor
12 yrs of Exp
600per hour
Classes: Class 10 Tuition, Class 9 Tuition and more.

With over 15 years of dedicated teaching experience, I am an accomplished and qualified educator specializing in Spoken English, Math, Science, Social...

Do you need help in finding the best teacher matching your requirements?

Post your requirement now
4
Rohit Patni Class 10 Tuition trainer in Jaipur Featured
Govindpuri Shiva Colony, Jaipur
Super Tutor
10 yrs of Exp
400per hour
Classes: Class 10 Tuition, Engineering Entrance Coaching and more.

I am a teacher of mathematics. I am giving online tuitions and tuitions at my home in Jaipur(Rajasthan). I have done M.Sc. , B.Ed. in mathematics....

5
Jyothi J. Class 10 Tuition trainer in Kochi Featured
Palluruthy, Kochi
Super Tutor
8 yrs of Exp
400per hour
Classes: Class 10 Tuition

I have been teaching class 10 students for the past 8 years. I teach students by making fundamentals clear. I prepare them for their board exam by...

6
Pranjal M. Class 10 Tuition trainer in Noida Featured
Sector 4, Noida
Super Tutor
5 yrs of Exp
950per hour
Classes: Class 10 Tuition, Class 8 Tuition and more.

Hello dear students, I am PRANJAL MISHRA, I teach Mathematics (upto A level) . I can improve your understanding in Mathematics using my innovative...

7
Dr Nandhini J V R Class 10 Tuition trainer in Chennai Featured
T Nagar, Chennai
Super Tutor
10 yrs of Exp
400per hour
Classes: Class 10 Tuition, Spoken English and more.

I am an experienced tutor with over 5 years of experience in teaching English, Tamil, Maths, Science, Social Science, History, Political Science across...

8
Tanmoy G. Class 10 Tuition trainer in Kolkata Featured
H C Sarani, Kolkata
Super Tutor
18 yrs of Exp
400per hour
Classes: Class 10 Tuition, Class 9 Tuition and more.

Great

9
Debabrato Chatterjee Class 10 Tuition trainer in Thane Featured
Thane West, Thane
Super Tutor
15 yrs of Exp
250per hour
Classes: Class 10 Tuition, Class 11 Tuition and more.

This is Debabrato Chatterjee online Maths and Science tutor having 13+years of experience. I have already and presently teaching students of IB,...

10
Vinotha R. Class 10 Tuition trainer in Chennai Featured
Virugambakkam, Chennai
Super Tutor
20 yrs of Exp
500per hour
Classes: Class 10 Tuition, Class 12 Tuition and more.

I am R.Vinotha ., M.Sc., M.Phil., B.Ed in mathematics.I am the trainer/tutor of this course .I was allotted 12 regular classes for a month.I am using...

Guitar Classes in your city

Reviews for top Class 10 Tuition

Average Rating
(4.9)
  • P
    review star review star review star review star review star
    27 Mar, 2013

    Sushma attended Class 10 Tuition

    "He teaches well and explains till the concept is understood well"

    D
    review star review star review star review star review star
    01 Apr, 2013

    Mary attended Class 10 Tuition

    "not started yet"

    P
    review star review star review star review star review star
    15 Apr, 2013

    Susan attended Class 10 Tuition

    "Constructive teaching"

    S
    review star review star review star review star review star
    25 Apr, 2013

    Ananya attended Class 10 Tuition

    "Very efficient, friendly & caring."

  • G
    review star review star review star review star review star
    30 Apr, 2013

    Anna attended Class 10 Tuition

    "He is prompt. He knows the subject and teaches well."

    S
    review star review star review star review star review star
    01 May, 2013

    Swaraj attended Class 10 Tuition

    "Satnam Sir is a very good teacher, he single handedly taught me my whole of Java..."

    N
    review star review star review star review star review star
    08 May, 2013

    Binit attended Class 10 Tuition

    "narayan sir has guided me very well in the whole academic year. He is very dedicated..."

    N
    review star review star review star review star review star
    09 May, 2013

    Anurag attended Class 10 Tuition

    "I was introduced to Narayan Sir by one of my classmates who has been taking tuition..."

Get connected

Linear equations in 2 variables Lessons

Solving Linear Wquation in two Varibles By Substitution Method
https://vz-3ad30922-ba4.b-cdn.net/2d534cba-73c9-4441-adee-53ec64e46332/play_480p.mp4

Linear equations in 2 variables Questions

Ask a Question

Post a Lesson

Answered on 18 Apr Learn CBSE/Class 9/Mathematics/Algebra/Linear equations in 2 variables

Nazia Khanum

Writing a Linear Equation for Taxi Fare Given Information: Initial fare: Rs 10 for the first kilometre Subsequent fare: Rs 6 per km Distance: xx km Total fare: Rs yy Formulating the Linear Equation Let's denote: xx: Distance travelled in kilometres yy: Total fare in rupees Equation for Total Fare: The... read more

Writing a Linear Equation for Taxi Fare

Given Information:

  • Initial fare: Rs 10 for the first kilometre
  • Subsequent fare: Rs 6 per km
  • Distance: xx km
  • Total fare: Rs yy

Formulating the Linear Equation

Let's denote:

  • xx: Distance travelled in kilometres
  • yy: Total fare in rupees

Equation for Total Fare:

The total fare can be calculated as the sum of the initial fare and the fare for the subsequent distance.

So, the equation can be expressed as:

y=10+6(x−1)y=10+6(x−1)

Where:

  • x−1x−1: Represents the distance after the first kilometre

Calculating Total Fare for 15 km

Now, let's substitute x=15x=15 into the equation to find the total fare for a 15 km journey.

y=10+6(15−1)y=10+6(15−1) y=10+6(14)y=10+6(14) y=10+84y=10+84 y=94y=94

Answer:

The total fare for a 15 km journey would be Rs. 94.

 
 
read less
Answers 1 Comments
Dislike Bookmark

Answered on 18 Apr Learn CBSE/Class 9/Mathematics/Algebra/Linear equations in 2 variables

Nazia Khanum

Problem Analysis: Given the equation 2x−y=p2x−y=p and a solution point (1,−2)(1,−2), we need to find the value of pp. Solution: Step 1: Substitute the Given Solution into the Equation Substitute the coordinates of the given solution point (1,−2)(1,−2) into the equation: 2(1)−(−2)=p2(1)−(−2)=p Step... read more

Problem Analysis:

Given the equation 2x−y=p2x−y=p and a solution point (1,−2)(1,−2), we need to find the value of pp.

Solution:

Step 1: Substitute the Given Solution into the Equation

Substitute the coordinates of the given solution point (1,−2)(1,−2) into the equation:

2(1)−(−2)=p2(1)−(−2)=p

Step 2: Solve for pp

2+2=p2+2=p 4=p4=p

Step 3: Final Result

p=4p=4

Conclusion:

The value of pp for the equation 2x−y=p2x−y=p when the point (1,−2)(1,−2) is a solution is 44.

 
 
read less
Answers 1 Comments
Dislike Bookmark

Answered on 18 Apr Learn CBSE/Class 9/Mathematics/Algebra/Linear equations in 2 variables

Nazia Khanum

Graph of the Equation x - y = 4 Graphing the Equation: To draw the graph of the equation x−y=4x−y=4, we'll first rewrite it in slope-intercept form, which is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept. Given equation: x−y=4x−y=4 Rewriting in slope-intercept... read more

Graph of the Equation x - y = 4

Graphing the Equation:

To draw the graph of the equation x−y=4x−y=4, we'll first rewrite it in slope-intercept form, which is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.

Given equation: x−y=4x−y=4

Rewriting in slope-intercept form:

y=x−4y=x−4

Now, let's plot the graph using this equation.

Plotting the Graph:

  1. Find y-intercept:
    Set x=0x=0 in the equation y=x−4y=x−4
    y=0−4y=0−4
    y=−4y=−4
    So, the y-intercept is at the point (0,−4)(0,−4).

  2. Find x-intercept:
    To find the x-intercept, set y=0y=0 in the equation y=x−4y=x−4.
    0=x−40=x−4
    x=4x=4
    So, the x-intercept is at the point (4,0)(4,0).

Drawing the Graph:

Now, plot the points (0,−4)(0,−4) and (4,0)(4,0) on the Cartesian plane and draw a straight line passing through these points. This line represents the graph of the equation x−y=4x−y=4.

Intersecting with the x-axis:

To find where the graph line meets the x-axis, we need to find the point where y=0y=0.

Substitute y=0y=0 into the equation x−y=4x−y=4:

x−0=4x−0=4

x=4x=4

So, when the graph line meets the x-axis, the coordinates of the point are (4,0)(4,0).

 
 
read less
Answers 1 Comments
Dislike Bookmark

Answered on 18 Apr Learn CBSE/Class 9/Mathematics/Algebra/Linear equations in 2 variables

Nazia Khanum

Graphing the Equation x + 2y = 6 To graph the equation x+2y=6x+2y=6, we'll first rewrite it in slope-intercept form (y=mx+by=mx+b): x+2y=6x+2y=6 2y=−x+62y=−x+6 y=−12x+3y=−21x+3 Plotting the Graph To plot the graph, we'll identify two points and draw a line through them: Intercept... read more

Graphing the Equation x + 2y = 6

To graph the equation x+2y=6x+2y=6, we'll first rewrite it in slope-intercept form (y=mx+by=mx+b):

x+2y=6x+2y=6 2y=−x+62y=−x+6 y=−12x+3y=−21x+3

Plotting the Graph

To plot the graph, we'll identify two points and draw a line through them:

  1. Intercept Method:

    • y-intercept (when x = 0): y=−12(0)+3=3y=−21(0)+3=3 Therefore, the y-intercept is (0, 3).
    • x-intercept (when y = 0): 0=−12x+30=−21x+3 −12x=3−21x=3 x=−6x=−6 Therefore, the x-intercept is (-6, 0).
  2. Slope Method: From the slope-intercept form y=−12x+3y=−21x+3, the slope is -1/2, meaning the line decreases by 1 unit in the y-direction for every 2 units in the x-direction.

Plotting the Points and Drawing the Line

Using the intercepts and the slope, we plot the points (0, 3) and (-6, 0), then draw a line through them.

Finding the Value of x when y = -3

Given y=−3y=−3, we substitute this value into the equation y=−12x+3y=−21x+3 and solve for x:

−3=−12x+3−3=−21x+3 −12x=−3−3−21x=−3−3 −12x=−6−21x=−6 x=−6×(−2)x=−6×(−2) x=12x=12

Conclusion

  • The graph of the equation x+2y=6x+2y=6 is a straight line passing through points (0, 3) and (-6, 0).
  • The value of xx when y=−3y=−3 is x=12x=12.
read less
Answers 1 Comments
Dislike Bookmark

Answered on 18 Apr Learn CBSE/Class 9/Mathematics/Algebra/Linear equations in 2 variables

Nazia Khanum

Understanding Linear Equations: Linear equations are fundamental in mathematics, representing straight lines on a coordinate plane. They're expressed in the form of ax+b=0ax+b=0, where aa and bb are constants. Identifying Axis: In the context of linear equations, the term "axis" typically refers to... read more

Understanding Linear Equations: Linear equations are fundamental in mathematics, representing straight lines on a coordinate plane. They're expressed in the form of ax+b=0ax+b=0, where aa and bb are constants.

Identifying Axis: In the context of linear equations, the term "axis" typically refers to either the x-axis or the y-axis on a Cartesian plane.

Analyzing the Equation: The linear equation provided is x−2=0x−2=0.

Finding the Axis: To determine which axis the given linear equation is parallel to, let's analyze the equation:

  1. Equation Form:

    • x−2=0x−2=0
  2. Solving for x:

    • x=2x=2
  3. Interpretation:

    • This equation indicates that no matter what value y takes, x will always be 2. This implies that the line represented by this equation is parallel to the y-axis.

Conclusion: The linear equation x−2=0x−2=0 is parallel to the y-axis.

 
 
read less
Answers 1 Comments
Dislike Bookmark

Looking for Class 10 Tuition ?

Find Online or Offline Class 10 Tuition on UrbanPro.

Do you offer Class 10 Tuition ?

Create Free Profile »

Looking for best Class 10 Tuition ?

POST YOUR REQUIREMENT
x

Ask a Question

Please enter your Question

Please select a Tag

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more