UrbanPro

Take Class 12 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

differination of |x| in conditions

Asked by Last Modified  

Follow 0
Answer

Please enter your answer

Home Tuitor for Class V to X,Computer,Speaking English,CBSE, ICSE & State Board

Let y = |x| Step 1) Applying first principle ... NOTE:- We shall apply the limit later & now here dx represents delta x. dy/dx = /dx as mentioned we shall apply limit later so currently dy/dx represents Step 2) Multiplying numerator and denominator by we get, /{dx*} Step 3) simplifying...
read more
Let y=|x| Step 1) Applying first principle ... NOTE:- We shall apply the limit later & now here dx represents delta x. dy/dx = [|x+dx| -|x|]/dx as mentioned we shall apply limit later so currently dy/dx represents [delta y/ delta x ] Step 2) Multiplying numerator and denominator by [|x+dx| + |x|] we get, [(x+dx)^2-x^2]/{dx*[|x+dx| +|x|]} Step 3) simplifying [2x*dx+(dx)^2]/{dx*[|x+dx| +|x|]} As we have not yet applied the limit we cancel a common dx term from numerator and denominator. Step 4) What remains is [2x+dx]/[|x+dx| +|x|] Step 5) Now we apply the limit of dx tends to zero Therefore, dy/dx = x/|x| Now for x>0, dy/dx = 1 for x<0, dy/dx = -1 at x=0 the function is not differentiable as dy/dx is not defined. read less
Comments

Mathematics Professor

Since the absolute value is defined by cases, |x|={x?xif x?0;if x0, x0, for ?x sufficiently close to 0 we will have x+?x>0. So f(x)=|x|=x, and f(x+?x)=|x+?x|=x+?x; plugging that into the limit, we have: lim?x?0f(x+?x)?f(x)?x=lim?x?0|x+?x|?|x|?x=lim?x?0(x+?x)?x?x. You should be able to finish it now. For...
read more
Since the absolute value is defined by cases, |x|={x?xif x?0;if x<0, it makes sense to deal separately with the cases of x>0, x<0, and x=0. For x>0, for ?x sufficiently close to 0 we will have x+?x>0. So f(x)=|x|=x, and f(x+?x)=|x+?x|=x+?x; plugging that into the limit, we have: lim?x?0f(x+?x)?f(x)?x=lim?x?0|x+?x|?|x|?x=lim?x?0(x+?x)?x?x. You should be able to finish it now. For x<0, for ?x sufficiently close to zero we will have x+?x<0; so f(x)=?x and f(x+?x)=?(x+?x). It should again be easy to finish it. The tricky one is x=0. I suggest using one-sided limits. For the limit as ?x?0+, x+?x=?x>0; for ?x?0?, x+?x=?x<0; the (one-sided) limits should now be straightforward. good luck read less
Comments

IIT/BITSAT Decoded !!

Differentiation of |x| is |x|/x , so for positive & negative x you can easily put x with appropriate sign to get the result.
Comments

"Decoding the World of Physics and Math: 12 Years of Expertise, Powered by a Teaching Enthusiasts"

when x=0- you will get differentiation -1 and when x=0+ you will get differentiation +1 this function is not differentiable at x=0
Comments

Tutor

Let y=|x|. Step 1 Applying first principle ... NOTE:- We shall apply the limit later. & Currently dx represents delta x. dy/dx=/dx as mentioned we shall apply limit later so currently dy/dx represents Step 2 multiplying numerator and denominator by we get, /{dx*} Step...
read more
Let y=|x|. Step 1 Applying first principle ... NOTE:- We shall apply the limit later. & Currently dx represents delta x. dy/dx=[|x+dx| -|x|]/dx as mentioned we shall apply limit later so currently dy/dx represents [delta y/ delta x ] Step 2 multiplying numerator and denominator by [|x+dx| + |x|] we get, [(x+dx)^2-x^2]/{dx*[|x+dx| +|x|]} Step 3 simplifying [2x*dx+(dx)^2]/{dx*[|x+dx| +|x|]} as we have not yet applied the limit we can cancel a common dx term from numerator and denominator. Step 4 What remains is [2x+dx]/[|x+dx| +|x|] Step 5 Now we apply the limit of dx tends to zero Therefore, dy/dx=x/|x| Now for x>0, dy/dx=1 for x<0, dy/dx=-1 at x=0 the function is not differentiable as dy/dx is not defined. read less
Comments

if x>0 it will be 1 and if x<0 then it will be -1 and at x=0 derivative is not defined.
Comments

i am a tution teacher

In differination ill give signum function 1when X is positive and -1 when it is negative
Comments

Teaching is my passion!!!!

if x>0 it will be 1 and if x<0 then it will be -1 and at x=0 derivative is not defined
Comments

Trainer

(d/dx) IxI = IxI/x, which is not continuous.
Comments

Ms office, tally,Dot net, C C++ Oracle java,B Tech Tutions,Spoken English,Graphic Design, Tutions for class 1 to B Tech,Abacus,Vedic maths,Bank Coaching,Sainik school entrance exams,Photoshop,Corel Draw,

Conditions under which one may differentiate term by term a convergent sequence of functions are to be found in the literature.f Some of these conditions are obtained as corollaries of theorems about term wise integration, and consequently contain in the hypothesis the assumption that the derived...
read more
Conditions under which one may differentiate term by term a convergent sequence of functions are to be found in the literature.f Some of these conditions are obtained as corollaries of theorems about term wise integration, and consequently contain in the hypothesis the assumption that the derived sequence converges. Without this assumption, sufficient conditions for term wise differentiation may be obtained from the fundamental theorem on reversing the order of iterated limits. read less
Comments

View 25 more Answers

Related Questions

What are the differences between anode and cathode?
'A'no'D'e is one that 'ADD's electrons to others by reducing its electrons so it is positive electrode......'CAT'hode 'CAT'ches electrons from others and becomes negative so it is negative electrode.
S.meenakshi
0 0
8
Why magnetic mono-pole does not exist?
In physics, the idea of the magnetic monopole is a hypothetical situation. Just like how we have the positive and the negative charges in current, in the same way, there are dipoles - North pole and the...
Abdur Rahman W.
What does PUC stand for?
Pre University Course
Prashant

What is the tution fee for 1st PUC Mathematics,Physics and Computer science  per hou?

Well, Komal it depends on the Location if you are within 5-6 km from my location then the fee will be for Mathematics (500/hr), Physics(600/hr) and if your location is more than that then the charges will...
Komala Nataraj

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons

Rolle's theorem in Calculus explained
Rolle's theorem is slightly different from Mean Value Theorem explained as simple as possible If a real valued function f(X) is continuous over a closed interval Function is differentiable over...

Electrostatic charge distribution.
Suppose there are two metallic charged bodies A and B, separated by an distance x and each having equal amount of charge, Q. Now another metallic uncharged body C is brought in contact with body A and...

Elementary Differential and Integral calculus
Calculus is one of the branches of Mathematics that involves in the study of ‘Rage to Change’ and their application to solving equations. It has two major branches, Differential Calculus that...
N

Nisha

0 0
0

Business Studies Class - XII Ch - 4 , 5 - Questions.
MM: 28 Time: 55 mins Define ‘Planning premises’. (1) Planning requires...

Recommended Articles

Raghunandan is a passionate teacher with a decade of teaching experience. Being a skilled trainer with extensive knowledge, he provides high-quality BTech, Class 10 and Class 12 tuition classes. His methods of teaching with real-time examples makes difficult topics simple to understand. He explains every concept in-detail...

Read full article >

Urmila is a passionate teacher with over 8 years of experience in teaching. She is currently pursuing her Ph. D. She provides classes for Class 11, Class 12, MBBS and Medical tuition.  Urmila began her career in teaching long before she became a teacher. She used to provide classes for foreign national students in her college...

Read full article >

Sandhya is a proactive educationalist. She conducts classes for CBSE, PUC, ICSE, I.B. and IGCSE. Having a 6-year experience in teaching, she connects with her students and provides tutoring as per their understanding. She mentors her students personally and strives them to achieve their goals with ease. Being an enthusiastic...

Read full article >

Swati is a renowned Hindi tutor with 7 years of experience in teaching. She conducts classes for various students ranging from class 6- class 12 and also BA students. Having pursued her education at Madras University where she did her Masters in Hindi, Swati knows her way around students. She believes that each student...

Read full article >

Looking for Class 12 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 12 Tuition Classes?

The best tutors for Class 12 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 12 Tuition with the Best Tutors

The best Tutors for Class 12 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more