UrbanPro
true

Take Class 8 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Rational numbers and its properties

N
Namrata P.
02/07/2017 0 0

In Mathematics a rational number is any number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q may be equal to 1, every integer is a rational Number.

Properties of addition of rational numbers:

1) closure property

2)commutative property

3)associative property

4)existence of additive identity property

5) existence of additive inverse property of addition of rational numbers.

 

Closure property of addition of rational numbers: The sum of two rational numbers is always a rational number. 

If a/b and c/d are any two rational numbers, then (a/b + c/d) is also a rational number. 


For example:

(i) Consider the rational numbers 1/3 and 3/4 Then, 

(1/3 + 3/4) 

= (4 + 9)/12

= 13/12, is a rational number 

(ii) Consider the rational numbers -5/12 and -1/4 Then, 

(-5/12 + -1/4) 

= {-5 + (-3)}/12

= -8/12 

= -2/3, is a rational number

(iii) Consider the rational numbers -2/3 and 4/5 Then, 

(-2/3 + 4/5) 

= (-10 + 12)/15 

= 2/15, is a rational number



Commutative property of addition of rational numbers:

Two rational numbers can be added in any order. 

Thus for any two rational numbers a/b and c/d, we have

(a/b + c/d) = (c/d + a/b) 

For example: 


(i) (1/2 + 3/4) 

= (2 + 3)/4

=5/4 

and (3/4 + 1/2) 

= (3 + 2)/4

= 5/4

Therefore, (1/2 + 3/4) = (3/4 + 1/2) 

(ii) (3/8 + -5/6) 


= {9 + (-20)}/24 

= -11/24

and (-5/6 + 3/8) 

= {-20 + 9}/24

= -11/24

Therefore, (3/8 + -5/6) = (-5/6 + 3/8) 

(iii) (-1/2 + -2/3) 

= {(-3) + (-4)}/6 

= -7/6

and (-2/3 + -1/2) 

= {(-4) + (-3)}/6

= -7/6

Therefore, (-1/2 + -2/3) = (-2/3 + -1/2) 


Associative property of addition of rational numbers:

While adding three rational numbers, they can be grouped in any order. 

Thus, for any three rational numbers a/b, c/d and e/f, we have 

(a/b + c/d) + e/f = a/b + (c/d + e/f) 

For example:

Consider three rationals -2/3, 5/7 and 1/6 Then, 

{(-2/3 + 5/7) + 1/6} = {(-14 + 15)/21 + 1/6} = (1/21 + 1/6) = (2 + 7)/42

= 9/42 = 3/14

and {(-2/3 + (5/7 + 1/6)} = {-2/3 + (30 + 7)/42} = (-2/3 + 37/42)

= (-28 + 37)/42 = 9/42 = 3/14

Therefore, {(-2/3 + 5/7) + 1/6} = {-2/3 + (5/7 + 1/6)} 


Existence of additive identity property of addition of rational numbers:

0 is a rational number such that the sum of any rational number and 0 is the rational number itself. 

Thus, (a/b + 0) = (0 + a/b) = a/b, for every rational number a/b

0 is called the additive identity for rationals. 


For example: 

(i) (3/5 + 0) = (3/5 + 0/5) = (3 + 0)/5 = 3/5 and similarly, (0 + 3/5) = 3/5

Therefore, (3/5 + 0) = (0 + 3/5) = 3/5

(ii) (-2/3 + 0) = (-2/3 + 0/3) = (-2 + 0)/3 = -2/3 and similarly, (0 + -2/3)

= -2/3

Therefore, (-2/3 + 0) = (0 + -2/3) = -2/3



Existence of additive inverse property of addition of rational numbers:

For every rational number a/b, there exists a rational number –a/b 

such that (a/b + -a/b) = {a + (-a)}/b = 0/b = 0 and similarly, (-a/b + a/b) = 0. 

Thus, (a/b + -a/b) = (-a/b + a/b) = 0. 

-a/b is called the additive inverse of a/b


For example:

(4/7 + -4/7) = {4 + (-4)}/7 = 0/7 = 0 and similarly, (-4/7 + 4/7) = 0

Thus, 4/7 and -4/7 are additive inverses of each other

0 Dislike
Follow 1

Please Enter a comment

Submit

Other Lessons for You

Mesuration: Angles
Angles: a figures is made by two rays (its sides), having one common closing point called its vertex, on a plane. Angles are used to measure the turn movement. Types of angle: Acute angle, Right angle,...

How to solve arithmetic series easily without remembering any formula?
1+2+3+4+5+.........100(100 terms) it can be seen as follows: 1+2+3+4+5+.......+95+96+97+98+99+100 can be rewritten as follows: (1+100)+(2+99)+(3+98)+(4+97)+(5+96)........so on every term become 101...

Anand Prakash Yadav

0 0
0

Some Solved Examples On Perimeter (Word Problems)
1. Find the perimeter of the quadrilateral with sides 5 cm, 7 cm, 9 cm and 11 cm. Solution: The formula to find the perimeter of the quadrilateral = sum of the length of all the four sides. Here...

Keep practising
Find out about the exam. Know your enemy - find out as much as you can about the exam. ... Ask for help. Don't feel bad if you need to ask for help. ... Sort out your subject material. Before starting...
V

Atomic Structure
All substances are made from atoms. Each atom is made of a nucleus - containing protons and neutrons - surrounded by electrons. The atomic number is the number of protons in an atom. The elements are...

Looking for Class 8 Tuition ?

Learn from Best Tutors on UrbanPro.

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 8 Tuition Classes?

The best tutors for Class 8 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 8 Tuition with the Best Tutors

The best Tutors for Class 8 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more