UrbanPro
true

Take Class 8 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

How To Factorise Polynomial?

Padmini R.
28/06/2017 0 0

Factorising:

1. Factorising - Expanding Bracket:

This section shows you how to factorise and includes examples.

Brackets should be expanded in the following ways:
a. For an expression of the form a(b + c), the expanded version is ab + ac, i.e., multiply the term outside the bracket by everything inside the bracket (e.g. 2x(x + 3) = 2x² + 6x [remember x × x is x²]).

b. For an expression of the form (a + b)(c + d), the expanded version is ac + ad + bc + bd, in other words everything in the first bracket should be multiplied by everything in the second.

Example:

Expand (2x + 3)(x - 1):
(2x + 3)(x - 1)
= 2x² - 2x + 3x - 3
= 2x² + x - 3

2. Factorising: Factorising is the reverse of expanding brackets, so it is, for example, putting 2x² + x - 3 into the form (2x + 3)(x - 1). This is an important way of solving quadratic equations.

The first step of factorising an expression is to 'take out' any common factors which the terms have. So if you were asked to factorise x² + x, since x goes into both terms, you would write x(x + 1) .

3. Factorising Quadratics: There is no simple method of factorising a quadratic expression, but with a little practise it becomes easier. One systematic method, however, is as follows:

Example:

Factorise 12y² - 20y + 3
= 12y² - 18y - 2y + 3    [here the 20y has been split up into two numbers whose multiple is 36. 36 was chosen because this is the product of 12 and 3, the other two numbers].
The first two terms, 12y² and -18y both divide by 6y, so 'take out' this factor of 6y.
6y(2y - 3) - 2y + 3 [we can do this because 6y(2y - 3) is the same as 12y² - 18y]
Now, make the last two expressions look like the expression in the bracket:
6y(2y - 3) -1(2y - 3)
The answer is (2y - 3)(6y - 1)

Example:

Factorise x² + 2x - 8
We need to split the 2x into two numbers which multiply to give -8. This has to be 4 and -2.
x² + 4x - 2x - 8
x(x + 4) - 2x - 8
x(x + 4)- 2(x + 4)
(x + 4)(x - 2)

Once you work out what is going on, this method makes factorising any expression easy. It is worth studying these examples further if you do not understand what is happening. Unfortunately, the only other method of factorising is by trial and error.

4. The Difference of Two Squares: If you are asked to factorise an expression which is one square number minus another, you can factorise it immediately. This is because a² - b² = (a + b)(a - b) .

Example:

Factorise 25 - x²
= (5 + x)(5 - x)   [imagine that a = 5 and b = x]

 

0 Dislike
Follow 0

Please Enter a comment

Submit

Other Lessons for You

Reading Techniques
Basic Reading Techniques: There are many steps for preparing to study a theory question. First you have read that once fully dont bother if you are not able to understand. Then split that...

OAA
I suggest a writing tip called OAA which means Observe Analyse and Apply. one will find it easy to answer any question if you follow this trip

How to solve arithmetic series easily without remembering any formula?
1+2+3+4+5+.........100(100 terms) it can be seen as follows: 1+2+3+4+5+.......+95+96+97+98+99+100 can be rewritten as follows: (1+100)+(2+99)+(3+98)+(4+97)+(5+96)........so on every term become 101...

Anand Prakash Yadav

0 0
0

Formation of Images on a concave mirror part 2
Object at center of curvature:- When the object is placed at the center of curvature of a concave mirror, the image formed is also at center of curvature, same in size, real and inverted. Object beyond...

Useful Thought for you all from miss sangita.
Learning is a two way process of both the teacher and the student. Correct form of learning should focus on the way of delivering knowledge to the students. For students,I would say, learn to be patient...
X

Looking for Class 8 Tuition Classes?

The best tutors for Class 8 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 8 Tuition with the Best Tutors

The best Tutors for Class 8 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more