UrbanPro
true

Take Class 10 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

LOGARITHMS

Shubham Jaiswal
22/04/2017 0 0
Definition and Basics of Logarithms--Part II

Saying   that    logaM =x  means exactly the same thing as saying ax = M .

In other words:

 

logais the number to which you raise a in order to get M.

 

Keep this in mind in thinking about logarithms.  It makes lots of things obvious.

For example:  What is log2 8?  Ask yourself "To what power should I raise 2 in order to get 8?"  Since 8 is 2the answer is "3."  So  log28=3. 

Here's another way that remembering the rule:

 

"logais the number to which you raise a in order to get M."

 

can make some things almost obvious.  For example, what is  2 log2 5?   Note that log2is the power to which  2 is being raised. 

 But log2 is the number to which you raise 2 in order to get 5!  So if you raise 2 to that number you get 5!!  In other words 

2 log2 5 = 5.

Let's use 

 

"logais the number to which you raise a in order to get M,"

 

to understand logarithms of product.  For example:  What is log2(8*32)?  

Notice that 8=23 and 32=2so 8*32=232 = 23+5 =2.  

But this means  that 

log2(8*32)=log2(28) = 8 = 3+5=

log2(23)+log2(25)=log2(8)+log2(32)

In other words, the log of the product 8*32 equals  the sum of the logs of 8 and 32.

Of course there is nothing special about the base 2.  The same idea holds for other logarithms.

Apply this idea to the following examples: 


 

If log264=7 and log2256=8  then log2(64*256) =

 

Rules

1. Inverse properties:   loga ax = x   and   a(loga x) = x

2. Product:  loga (xy) = loga x + loga y

3. Quotient:  

4. Power:   loga (xp) = p loga x

5. Change of base formula:

Careful!!

loga (x + y) ≠ loga x + loga y

loga (x – y) ≠ loga x loga y

Note: ln x is sometimes written Ln x or LN x

 

Logarithm Rules

The base b logarithm of a number is the exponent that we need to raise the base in order to get the number.

Logarithm definition

When b is raised to the power of y is equal x:

b y = x

Then the base b logarithm of x is equal to y:

logb(x) = y

For example when:

24 = 16

Then

log2(16) = 4

Logarithm as inverse function of exponential function

The logarithmic function,

y = logb(x)

is the inverse function of the exponential function,

x = by

So if we calculate the exponential function of the logarithm of x (x>0),

f (f -1(x)) = blogb(x) = x

Or if we calculate the logarithm of the exponential function of x,

f -1(f (x)) = logb(bx) = x

Natural logarithm (ln)

Natural logarithm is a logarithm to the base e:

ln(x) = loge(x)

When e constant is the number:

e=\lim_{x\rightarrow \infty }\left ( 1+\frac{1}{x} \right )^x = 2.718281828459...

or

e=\lim_{x\rightarrow 0 }\left ( 1+ \right x)^\frac{1}{x}

 

See: Natural logarithm

Inverse logarithm calculation

The inverse logarithm (or anti logarithm) is calculated by raising the base b to the logarithm y:

x = log-1(y) = b y

Logarithmic function

The logarithmic function has the basic form of:

f (x) = logb(x)

Logarithm rules

Rule name Rule
Logarithm product rule
logb(x ? y) = logb(x) + logb(y)
Logarithm quotient rule
logb(x / y) = logb(x) - logb(y)
Logarithm power rule
logb(x y) = y ? logb(x)
Logarithm base switch rule
logb(c) = 1 / logc(b)
Logarithm base change rule
logb(x) = logc(x) / logc(b)
Derivative of logarithm
f (x) = logb(x) ⇒ f ' (x) = 1 / ( x ln(b) )
Integral of logarithm
∫ logb(x) dx = x ? ( logb(x) - 1 / ln(b) ) + C
Logarithm of negative number
logb(x) is undefined when x≤ 0
Logarithm of 0
logb(0) is undefined
\lim_{x\to 0^+}\textup{log}_b(x)=-\infty
Logarithm of 1
logb(1) = 0
Logarithm of the base
logb(b) = 1
Logarithm of infinity
lim logb(x) = ∞,when x→∞

See: Logarithm rules

 

Logarithm product rule

The logarithm of the multiplication of x and y is the sum of logarithm of x and logarithm of y.

logb(x ? y) = logb(x) + logb(y)

For example:

log10(3 ? 7) = log10(3) + log10(7)

Logarithm quotient rule

The logarithm of the division of x and y is the difference of logarithm of x and logarithm of y.

logb(x / y) = logb(x) - logb(y)

For example:

log10(3 / 7) = log10(3) - log10(7)

Logarithm power rule

The logarithm of x raised to the power of y is y times the logarithm of x.

logb(x y) = y ? logb(x)

For example:

log10(28) = 8? log10(2)

Logarithm base switch rule

The base b logarithm of c is 1 divided by the base c logarithm of b.

logb(c) = 1 / logc(b)

For example:

log2(8) = 1 / log8(2)

Logarithm base change rule

The base b logarithm of x is base c logarithm of x divided by the base c logarithm of b.

logb(x) = logc(x) / logc(b)

For example, in order to calculate log2(8) in calculator, we need to change the base to 10:

log2(8) = log10(8) / log10(2)

See: log base change rule

Logarithm of negative number

The base b real logarithm of x when x<=0 is undefined when x is negative or equal to zero:

logb(x) is undefined when x ≤ 0

See: log of negative number

Logarithm of 0

The base b logarithm of zero is undefined:

logb(0) is undefined

The limit of the base b logarithm of x, when x approaches zero, is minus infinity:

\lim_{x\to 0^+}\textup{log}_b(x)=-\infty

See: log of zero

Logarithm of 1

The base b logarithm of one is zero:

logb(1) = 0

For example, teh base two logarithm of one is zero:

log2(1) = 0

See: log of one

Logarithm of infinity

The limit of the base b logarithm of x, when x approaches infinity, is equal to infinity:

lim logb(x) = ∞, when x→∞

See: log of infinity

Logarithm of the base

The base b logarithm of b is one:

logb(b) = 1

For example, the base two logarithm of two is one:

log2(2) = 1

Logarithm derivative

When

f (x) = logb(x)

Then the derivative of f(x):

f ' (x) = 1 / ( x ln(b) )

See: log derivative

Logarithm integral

The integral of logarithm of x:

∫ logb(x) dx = x ? ( logb(x) - 1 / ln(b) ) + C

For examp

0 Dislike
Follow 0

Please Enter a comment

Submit

Other Lessons for You

Indices of Numbers
Squares and Cubes from Numbers 1 to 100: NUMBER SQUARE CUBE X X2 X3 1 1 1 2 4 8 3 9 27 4 16 64 5 25 125 6 36 216 7 49 343 8 64 512 9 81 729 10 100 1000 11 121 1331 12 144 1728 13 169 2197 14 196 2744 15 225 3375 16 256 4096 17 289 4913 18 324 5832 19 361 6859 20 400 8000 21 441 9261 22 484 10648 23 529 12167 24 576 13824 25 625 15625 26 676 17576 27 729 19683 28 784 21952 29 841 24389 30 900 27000 31 961 29791 32 1024 32768 33 1089 35937 34 1156 39304 35 1225 42875 36 1296 46656 37 1369 50653 38 1444 54872 39 1521 59319 40 1600 64000 41 1681 68921 42 1764 74088 43 1849 79507 44 1936 85184 45 2025 91125 46 2116 97336 47 2209 103823 48 2304 110592 49 2401 117649 50 2500 125000 51 2601 132651 52 2704 140608 53 2809 148877 54 2916 157464 55 3025 166375 56 3136 175616 57 3249 185193 58 3364 195112 59 3481 205379 60 3600 216000 61 3721 226981 62 3844 238328 63 3969 250047 64 4096 262144 65 4225 274625 66 4356 287496 67 4489 300763 68

Learning Tips for Students
Creating a Study Plan - Please plan your day/week to study. Kindly adhere to the plan created. Taking Study Breaks - Please take proper breaks. If you find you are tired, then kindly take quick 5 to 10...
S

Suresh Kumar S

0 0
0

Google Street View Cars Are Mapping Methane Leaks
Natural gas pipeline leaks that pose a safety hazard are quickly addressed. But what about leaks too small to pose a threat? These mall leaks are often overlooked and they collectively release tons of...

Comparisons - CA, B.Com, BBA and LLB
Criteria CA B.Com LLB BBA Duration 5 years 3 years 5 years 3 years Entrance Test CPT Not required CLAT CET University ICAI Various Bar...

Square a number using the Deficiency or Yaavadunam Sutra method of vedic maths
Square a number by the Deficiency Sutra Method Rules: Rule 1 : Find the base of given number. That is maybe, 10, 100, 1000, 10000, ... Rule 2 : Find the difference between base and a given number....

Looking for Class 10 Tuition ?

Learn from Best Tutors on UrbanPro.

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 10 Tuition Classes?

The best tutors for Class 10 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 10 Tuition with the Best Tutors

The best Tutors for Class 10 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more