UrbanPro

Take Class 12 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

A spherical conductor of radius 12 cm has a charge of 1.6 × 10−7C distributed uniformly on its surface. What is the electric field

(a) Inside the sphere

(b) Just outside the sphere

(c) At a point 18 cm from the centre of the sphere?

Asked by Last Modified  

6 Answers

Learn Exercise 2

Follow 4
Answer

Please enter your answer

(a) Radius of the spherical conductor, r = 12 cm = 0.12 m Charge is uniformly distributed over the conductor, q = 1.6 × 10−7 C Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it. (b) Electric...
read more

(a) Radius of the spherical conductor, r = 12 cm = 0.12 m

Charge is uniformly distributed over the conductor, q = 1.6 × 10−7 C

Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it.

(b) Electric field E just outside the conductor is given by the relation,

Where,

= Permittivity of free space

Therefore, the electric field just outside the sphere is .

(c) Electric field at a point 18 m from the centre of the sphere = E1

Distance of the point from the centre, d = 18 cm = 0.18 m

Therefore, the electric field at a point 18 cm from the centre of the sphere is

.

read less
Comments

An experienced physics professional for iit-jee & neet

Using Gauss law the electric field can be calculated.
Comments

Clear Your Concepts and Score Higher

(a)electric field inside a spherical conductor is zero. It is obvious that if we consider a Gaussian surface inside sphere it will enclose zero charge because all charges reside on the surface. (b) Electric field just outside the surface will be E= q/4π∈0r² where r= 12 cm . Putting these...
read more

(a)electric field inside a spherical conductor is zero. It is obvious that if we consider a Gaussian surface inside sphere it will enclose zero charge because all charges reside on the surface.

(b) Electric field just outside the surface will be E= q/4π∈0r² where r= 12 cm . Putting these values  we get E=105N

(c) Similarly for r=18 cm we get E=44.44×105N

read less
Comments

Tseamcet 1500 rank in open category

According to gauss law, Φ=q/e Φ=E.A( E=electric field and A=area enclosed by the Gaussian surface) where q is net charge enclosed by the Gaussian surface and e is the permitivity of free space(8.85*10-12) Now, a) inside the sphere charge is zero so Φ=0 and E is also zero ( from above...
read more

According to gauss law,

Φ=q/e     Φ=E.A( E=electric field and A=area enclosed by the Gaussian surface)

where q is net charge enclosed by the Gaussian surface and e is the permitivity of free space(8.85*10-12)

Now, 

a) inside the sphere charge is zero so Φ=0 and E is also zero ( from above 

b) apply above formula with area of sphere =4Π(r)2 and find electric field

C) same as b case but here the radius changes to 18cm .Apply gauss law

read less
Comments

Mechanical engineer with 2 years of teaching experience

a) We know, charge have nature to reside outer surface of the conductor. It means, charge inside the surface equals zero.According to Gaussian theorem,Ф = q/ε ₀, here q is charged inclosed the Gaussian surface.∵ q = 0so, Ф = 0 and flux , Ф = E.A = 0so, E = 0Hence, inside the sphere, the electric...
read more

a) We know, charge have nature to reside outer surface of the conductor. It means, charge inside the surface equals zero.
According to Gaussian theorem,
Ф = q/ε ₀, here q is charged inclosed the Gaussian surface.
∵ q = 0
so, Ф = 0 and flux , Ф = E.A = 0
so, E = 0
Hence, inside the sphere, the electric field equals zero.
(b) Take a Gaussian surface of radius r > R = 12cm
then, charged inclosed into the Gaussian surface is q = 1.6 × 10⁻⁷ C
So, Ф = q/ε₀
So, EA = q/ε₀
E = q/ε₀A, here A is the surface area of Gaussian spherical surface
e.g., A = 4πr²
So, E = q/4πε₀r² = 9 × 10⁹ × 1.6 × 10⁻⁷/(12 × 10⁻²)²
= 10⁵ N/C
(C) Similarly explanation of (B),
So, E = kq/r²
Here , k = 9 × 10⁹ Nm²/C² , q = 1.6 × 10⁻⁷C and r = 18cm
So, E = 9 × 10⁹ × 1.6 × 10⁻⁷/(18 × 10⁻²)²
= 4.44 × 10⁴ N/C.

read less
Comments

(a) Radius of the spherical conductor, r = 12 cm = 0.12 m Charge is uniformly distributed over the conductor, q = 1.6 × 10 -7 C Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it. (b) Electric field...
read more

(a) Radius of the spherical conductor, r = 12 cm = 0.12 m

Charge is uniformly distributed over the conductor, q = 1.6 × 10 -7 C

Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it.

(b) Electric field E just outside the conductor is given by the relation,

Where,

= Permittivity of free space

Therefore, the electric field just outside the sphere is 105 N C-1

(c) Electric field at a point 18 m from the centre of the sphere = E1

Distance of the point from the centre, d = 18 cm = 0.18 m

Therefore, the electric field at a point 18 cm from the centre of the sphere is .

4.4 x 104 N/C

read less
Comments

View 4 more Answers

Related Questions

Two charges 2 μC and −2 µC are placed at points A and B 6 cm apart.

(a) Identify an equipotential surface of the system.

(b) What is the direction of the electric field at every point on this surface?

(a) The situation is represented in the given figure. An equipotential surface is the plane on which total potential is zero everywhere. This plane is normal to line AB. The plane is located at the mid-point...
Kartika
0 0
5

Two charges 5 × 10−8 C and −3 × 10−8 C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.

There are two charges, Distance between the two charges, d = 16 cm = 0.16 m Consider a point P on the line joining the two charges, as shown in the given figure. r = Distance of point P from charge q1 Let...
Aditi
0 0
5
In a parallel plate capacitor with air between the plates, each plate has an area of 6 × 10−3 m2 and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?
Area of each plate of the parallel plate capacitor, A = 6 × 10−3 m2 Distance between the plates, d = 3 mm = 3 × 10−3 m Supply voltage, V = 100 V Capacitance C of a parallel plate...
Prasenjit
0 0
7
A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.
The given figure shows six equal amount of charges, q, at the vertices of a regular hexagon. Where, Charge, q = 5 µC = 5 × 10−6 C Side of the hexagon, l = AB = BC = CD = DE = EF = FA...
Dinesh
0 0
6
Explain what would happen if in the capacitor given in Exercise 2.8, a 3 mm thick mica sheet (of dielectric constant = 6) were inserted between the plates,

(a) While the voltage supply remained connected.

(b) After the supply was disconnected.

(a) Dielectric constant of the mica sheet, k = 6 Initial capacitance, C = 1.771 × 10−11 F Supply voltage, V = 100 V Potential across the plates remains 100 V. (b) Dielectric constant, k =...
Praveen
0 0
6

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Recommended Articles

Swati is a renowned Hindi tutor with 7 years of experience in teaching. She conducts classes for various students ranging from class 6- class 12 and also BA students. Having pursued her education at Madras University where she did her Masters in Hindi, Swati knows her way around students. She believes that each student...

Read full article >

Urmila is a passionate teacher with over 8 years of experience in teaching. She is currently pursuing her Ph. D. She provides classes for Class 11, Class 12, MBBS and Medical tuition.  Urmila began her career in teaching long before she became a teacher. She used to provide classes for foreign national students in her college...

Read full article >

Mohammad Wazid is a certified professional tutor for class 11 students. He has 6 years of teaching experience which he couples with an energetic attitude and a vision of making any subject easy for the students. Over the years he has developed skills with a capability of understanding the requirements of the students. This...

Read full article >

Sandhya is a proactive educationalist. She conducts classes for CBSE, PUC, ICSE, I.B. and IGCSE. Having a 6-year experience in teaching, she connects with her students and provides tutoring as per their understanding. She mentors her students personally and strives them to achieve their goals with ease. Being an enthusiastic...

Read full article >

Looking for Class 12 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 12 Tuition Classes?

The best tutors for Class 12 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 12 Tuition with the Best Tutors

The best Tutors for Class 12 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more