Take Class 12 Tuition from the Best Tutors
Search in
(a) Inside the sphere
(b) Just outside the sphere
(c) At a point 18 cm from the centre of the sphere?
(a) Radius of the spherical conductor, r = 12 cm = 0.12 m
Charge is uniformly distributed over the conductor, q = 1.6 × 10−7 C
Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it.
(b) Electric field E just outside the conductor is given by the relation,
Where,
= Permittivity of free space
Therefore, the electric field just outside the sphere is .
(c) Electric field at a point 18 m from the centre of the sphere = E1
Distance of the point from the centre, d = 18 cm = 0.18 m
Therefore, the electric field at a point 18 cm from the centre of the sphere is
.
read less
(a)electric field inside a spherical conductor is zero. It is obvious that if we consider a Gaussian surface inside sphere it will enclose zero charge because all charges reside on the surface.
(b) Electric field just outside the surface will be E= q/4π∈0r² where r= 12 cm . Putting these values we get E=105N
(c) Similarly for r=18 cm we get E=44.44×105N
read lessAccording to gauss law,
Φ=q/e Φ=E.A( E=electric field and A=area enclosed by the Gaussian surface)
where q is net charge enclosed by the Gaussian surface and e is the permitivity of free space(8.85*10-12)
Now,
a) inside the sphere charge is zero so Φ=0 and E is also zero ( from above
b) apply above formula with area of sphere =4Π(r)2 and find electric field
C) same as b case but here the radius changes to 18cm .Apply gauss law
read lessa) We know, charge have nature to reside outer surface of the conductor. It means, charge inside the surface equals zero.
According to Gaussian theorem,
Ф = q/ε ₀, here q is charged inclosed the Gaussian surface.
∵ q = 0
so, Ф = 0 and flux , Ф = E.A = 0
so, E = 0
Hence, inside the sphere, the electric field equals zero.
(b) Take a Gaussian surface of radius r > R = 12cm
then, charged inclosed into the Gaussian surface is q = 1.6 × 10⁻⁷ C
So, Ф = q/ε₀
So, EA = q/ε₀
E = q/ε₀A, here A is the surface area of Gaussian spherical surface
e.g., A = 4πr²
So, E = q/4πε₀r² = 9 × 10⁹ × 1.6 × 10⁻⁷/(12 × 10⁻²)²
= 10⁵ N/C
(C) Similarly explanation of (B),
So, E = kq/r²
Here , k = 9 × 10⁹ Nm²/C² , q = 1.6 × 10⁻⁷C and r = 18cm
So, E = 9 × 10⁹ × 1.6 × 10⁻⁷/(18 × 10⁻²)²
= 4.44 × 10⁴ N/C.
(a) Radius of the spherical conductor, r = 12 cm = 0.12 m
Charge is uniformly distributed over the conductor, q = 1.6 × 10 -7 C
Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it.
(b) Electric field E just outside the conductor is given by the relation,
Where,
= Permittivity of free space
Therefore, the electric field just outside the sphere is 105 N C-1
(c) Electric field at a point 18 m from the centre of the sphere = E1
Distance of the point from the centre, d = 18 cm = 0.18 m
Therefore, the electric field at a point 18 cm from the centre of the sphere is .
4.4 x 104 N/C
read lessView 4 more Answers
Related Questions
Two charges 5 × 10−8 C and −3 × 10−8 C are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero.
(a) Identify an equipotential surface of the system.
(b) What is the direction of the electric field at every point on this surface?
(a) While the voltage supply remained connected.
(b) After the supply was disconnected.
Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com
Ask a QuestionRecommended Articles
Meet Swati, a Hindi Tutor from Bangalore
Swati is a renowned Hindi tutor with 7 years of experience in teaching. She conducts classes for various students ranging from class 6- class 12 and also BA students. Having pursued her education at Madras University where she did her Masters in Hindi, Swati knows her way around students. She believes that each student...
Meet Urmila, an MBBS tutor from Bangalore
Urmila is a passionate teacher with over 8 years of experience in teaching. She is currently pursuing her Ph. D. She provides classes for Class 11, Class 12, MBBS and Medical tuition. Urmila began her career in teaching long before she became a teacher. She used to provide classes for foreign national students in her college...
Meet Mohammad Wazid, a skilled trainer for...
Mohammad Wazid is a certified professional tutor for class 11 students. He has 6 years of teaching experience which he couples with an energetic attitude and a vision of making any subject easy for the students. Over the years he has developed skills with a capability of understanding the requirements of the students. This...
Meet Sandhya R, a B.Sc tutor from Bangalore
Sandhya is a proactive educationalist. She conducts classes for CBSE, PUC, ICSE, I.B. and IGCSE. Having a 6-year experience in teaching, she connects with her students and provides tutoring as per their understanding. She mentors her students personally and strives them to achieve their goals with ease. Being an enthusiastic...
Looking for Class 12 Tuition ?
Learn from the Best Tutors on UrbanPro
Are you a Tutor or Training Institute?
Join UrbanPro Today to find students near youThe best tutors for Class 12 Tuition Classes are on UrbanPro
The best Tutors for Class 12 Tuition Classes are on UrbanPro