Take Class 12 Tuition from the Best Tutors
Search in
(b) An object 1.5 cm in size is placed on the side of the convex lens in the arrangement (a) above. The distance between the object and the convex lens is 40 cm. Determine the magnification produced by the two-lens system, and the size of the image.
Focal length of the convex lens, f1 = 30 cm
Focal length of the concave lens, f2 = −20 cm
Distance between the two lenses, d = 8.0 cm
(a) When the parallel beam of light is incident on the convex lens first:
According to the lens formula, we have:
Where,
= Object distance = ∞
v1 = Image distance
The image will act as a virtual object for the concave lens.
Applying lens formula to the concave lens, we have:
Where,
= Object distance
= (30 − d) = 30 − 8 = 22 cm
= Image distance
The parallel incident beam appears to diverge from a point that is from the centre of the combination of the two lenses.
(ii) When the parallel beam of light is incident, from the left, on the concave lens first:
According to the lens formula, we have:
Where,
= Object distance = −∞
= Image distance
The image will act as a real object for the convex lens.
Applying lens formula to the convex lens, we have:
Where,
= Object distance
= −(20 + d) = −(20 + 8) = −28 cm
= Image distance
Hence, the parallel incident beam appear to diverge from a point that is (420 − 4) 416 cm from the left of the centre of the combination of the two lenses.
The answer does depend on the side of the combination at which the parallel beam of light is incident. The notion of effective focal length does not seem to be useful for this combination.
(b) Height of the image, h1 = 1.5 cm
Object distance from the side of the convex lens,
According to the lens formula:
Where,
= Image distance
Magnification,
Hence, the magnification due to the convex lens is 3.
The image formed by the convex lens acts as an object for the concave lens.
According to the lens formula:
Where,
= Object distance
= +(120 − 8) = 112 cm.
= Image distance
Magnification,
Hence, the magnification due to the concave lens is.
The magnification produced by the combination of the two lenses is calculated as:
The magnification of the combination is given as:
Where,
h1 = Object size = 1.5 cm
h2 = Size of the image
Hence, the height of the image is 0.98 cm.
read lessNow ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com
Ask a QuestionRecommended Articles
Meet Radhe Shyam Burman, an MBA Tutor from...
Radhe Shyam is a highly skilled accounts and finance trainer with 8 years of experience in teaching. Accounting is challenging for many students and that’s where Radhe Shyam’s expertise comes into play. He helps his students not only in understanding the subject but also advises them on how to overcome the fear of accounts...
Meet Sandhya R, a B.Sc tutor from Bangalore
Sandhya is a proactive educationalist. She conducts classes for CBSE, PUC, ICSE, I.B. and IGCSE. Having a 6-year experience in teaching, she connects with her students and provides tutoring as per their understanding. She mentors her students personally and strives them to achieve their goals with ease. Being an enthusiastic...
Meet Raghunandan.G.H, a B. Tech Tutor from...
Raghunandan is a passionate teacher with a decade of teaching experience. Being a skilled trainer with extensive knowledge, he provides high-quality BTech, Class 10 and Class 12 tuition classes. His methods of teaching with real-time examples makes difficult topics simple to understand. He explains every concept in-detail...
Meet Urmila, an MBBS tutor from Bangalore
Urmila is a passionate teacher with over 8 years of experience in teaching. She is currently pursuing her Ph. D. She provides classes for Class 11, Class 12, MBBS and Medical tuition. Urmila began her career in teaching long before she became a teacher. She used to provide classes for foreign national students in her college...
Looking for Class 12 Tuition ?
Learn from the Best Tutors on UrbanPro
Are you a Tutor or Training Institute?
Join UrbanPro Today to find students near youThe best tutors for Class 12 Tuition Classes are on UrbanPro
The best Tutors for Class 12 Tuition Classes are on UrbanPro