UrbanPro
true

Take BTech Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

Depth First Traversal For A Graph

D Subba Rao
05/02/2018 0 0

Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid processing a node more than once, we use a boolean visited array.

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices, then 2 will be processed again and it will become a non-terminating process. A Depth First Traversal of the following graph is 2, 0, 1, 3.

Following are implementations of simple Depth First Traversal. The C++ implementation uses adjacency list representation of graphs. STL‘s list container is used to store lists of adjacent nodes.

First Traversal (or Search) for a graph is similar to Depth First Traversal of a tree. The only catch here is, unlike trees, graphs may contain cycles, so we may come to the same node again. To avoid processing a node more than once, we use a boolean visited array.

For example, in the following graph, we start traversal from vertex 2. When we come to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we don’t mark visited vertices, then 2 will be processed again and it will become a non-terminating process. A Depth First Traversal of the following graph is 2, 0, 1, 3.

                                        
Following are implementations of simple Depth First Traversal. The C++ implementation uses adjacency list representation of graphs. STL‘s list container is used to store lists of adjacent nodes.

// C++ program to print DFS traversal from
// a given vertex in a  given graph
#include
#include
using namespace std;
 
// Graph class represents a directed graph
// using adjacency list representation
class Graph
{
    int V;    // No. of vertices
 
    // Pointer to an array containing
    // adjacency lists
    list<int> *adj;
 
    // A recursive function used by DFS
    void DFSUtil(int v, bool visited[]);
public:
    Graph(int V);   // Constructor
 
    // function to add an edge to graph
    void addEdge(int v, int w);
 
    // DFS traversal of the vertices
    // reachable from v
    void DFS(int v);
};
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}
 
void Graph::DFSUtil(int v, bool visited[])
{
    // Mark the current node as visited and
    // print it
    visited[v] = true;
    cout << v << " ";
 
    // Recur for all the vertices adjacent
    // to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFSUtil(*i, visited);
}
 
// DFS traversal of the vertices reachable from v.
// It uses recursive DFSUtil()
void Graph::DFS(int v)
{
    // Mark all the vertices as not visited
    bool *visited = new bool[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;
 
    // Call the recursive helper function
    // to print DFS traversal
    DFSUtil(v, visited);
}
 
int main()
{
    // Create a graph given in the above diagram
    Graph g(4);
    g.addEdge(0, 1);
    g.addEdge(0, 2);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 3);
 
    cout << "Following is Depth First Traversal"
            " (starting from vertex 2) \n";
    g.DFS(2);
 
    return 0;
}
0 Dislike
Follow 2

Please Enter a comment

Submit

Other Lessons for You

Computer Awareness
A Computer is an electronic device that can be instructed to carry out an arbitrary set of arithmetic or logical operations automatically. 1. Introduction: i. Speed: The speed of computation is very...
P

Parul S.

0 0
0

Binary and Complete Binary Tree
Binary Tree - In a binary tree, every node except leaf node contains almost two children. - if every internal node contains precisely two children, then it is called 2-array binary tree. - leaves = Internal...

What Are The Two Forms Of #Include?
There are two variants of #include. The one is #include and the other one is #include”file”. In general the first form that is #include is used to include system defined header files which...

Facts about C language
C programming language was developed in 1972 by Dennis Ritchie at AT&T Bell Labs. It was developed to overcome the problems of languages such as B, BPCL. It was developed to write the Unix operating...

Getting A Bit Deeper Into Time Complexity Analysis
What is Time Complexity Analysis? In the last blog, you got a rough idea about the Time Complexity and that was all about to judge how fast the algorithm can run, or putting it in another way, how much...
X

Looking for BTech Tuition Classes?

The best tutors for BTech Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take BTech Tuition with the Best Tutors

The best Tutors for BTech Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more