GD&T is a symbolic language used by engineers to accurately define the geometry of mechanical parts. Its focus is on communicating design intent and the functions of parts. GD&T consists of dimensions, symbols, definitions, rules, and conventions that explain the functional requirements of parts or assemblies of a product or system and types of tolerances such as form, orientation, location, and so on. This language is used on engineering drawings and ensures easy communication among designers, mechanical engineers, and fabricators.
The course teaches you the symbols and numerical values and other rules and conventions of GD&T that are used for defining the theoretically perfect geometry of parts and for prescribing the allowable variations in the forms and sizes of parts, among others. Upon completion of this course, you will be able to:
- Distinctions between ASME and ISO Standards
- Practical problem solving with real-world examples
- Gauging Methods and Implications
- Explanations and implications of using GD&T symbols
- Basic and Advanced GD&T Training
It is important to define and communicate the level of accuracy and precision that is required for a given part of a design to ensure the part's fit and function. GD&T is indispensable in describing the part's theoretically exact size and profile It is a standardised, international system. It eliminates the need for engineers to have many notes. Hence, mechanical engineers who are well versed in GD&T-and thus, know all the rules and symbols concerning dimensioning and tolerancing-can find it easy to get the following jobs:
- CAD Engineer
- Mechanical Design Engineer
- Product Manager
- Structural Design Engineer
- QC Engineer
- Systems Design and Analysis Engineer