The syllabus may be changed for different universities. All syllabus will be covered from the very basic fundamentals. GATE syllabus and GATE Previous year questions will also be covered in class. You Can book a free demo class for given time slots. I used to show animated videos and images for a better understanding of students.
Section 1: Flow and Fluid Properties
viscosity, relationship between stress and strain-rate for Newtonian fluids, incompressible and compressible flows, differences between laminar and turbulent flows. Hydrostatics: Buoyancy, manometry, forces on submerged bodies.
Section 2: Kinematics
Eulerian and Lagrangian description of fluids motion, concept of local and convective accelerations, steady and unsteady flows.
Section 3: Integral analysis
Control volume analysis for mass, momentum and energy.
Section 4: Differential Analysis
Differential equations of mass and momentum for incompressible flows: inviscid - Euler equation and viscous flows - Navier-Stokes equations, concept of fluid rotation, vorticity, stream function, Exact solutions of Navier-Stokes equation for Couette Flow and Poiseuille flow.
Section 5: Inviscid flows
Bernoulli’s equation - assumptions and applications, potential function, Elementary plane flows - uniform flow, source, sink and doublet and their superposition for potential flow past simple geometries.
Section 6: Dimensional analysis
Concept of geometric, kinematic and dynamic similarity, some common non-dimensional parameters and their physical significance: Reynolds number, Froude number and Mach number.
Section 7: Internal flows
Fully developed pipe flow, empirical relations for laminar and turbulent flows: friction factor and Darcy-Weisbach relation.
Section 8: Prandtl boundary layer equations
Concept and assumptions, qualitative idea of boundary layer and separation, streamlined and bluff bodies, drag and lift forces. Flow measurements: Basic ideas of flow measurement using venturimeter, pitot-static tube and orifice plate.