🎓 Azure Data Engineering Course Syllabus
🧑‍🏫 Target Audience:
-
Aspiring Data Engineers
-
ETL Developers
-
Data Analysts transitioning to engineering
-
Cloud Engineers focusing on Azure
đź“… Total Duration: 8 to 10 Weeks
📍 Mode: Online | Practical + Theory Mix | Use Case Driven
đź§© Module 1: Introduction to Azure & Data EngineeringÂ
-
Overview of Cloud Computing & Azure
-
Introduction to Data Engineering
-
Understanding Azure Portal & Resources
-
Azure Regions, Subscriptions, Resource Groups
-
Azure Storage Options: Blob, Data Lake Gen2
🕒 Duration: 3–4 hours
đź§© Module 2: Azure Storage FundamentalsÂ
-
Azure Blob Storage, ADLS Gen2
-
Hierarchical Namespace
-
Access Tiers and Security
-
Hands-on with Storage Explorer, SAS, RBAC
🕒 Duration: 4–6 hours
đź§© Module 3: Azure Data Factory (ADF)
-
ADF Architecture and Components
-
Linked Services, Datasets, Pipelines
-
Copy Activity
-
Triggers, Parameters, Variables
-
Monitor & Debug Pipelines
-
Integration Runtimes
-
Best Practices for ADF Pipelines
🕒 Duration: 10–12 hours
đź§© Module 4: Azure SQL & Synapse Analytics
-
Azure SQL Database vs Managed Instance
-
Synapse Architecture Overview
-
Dedicated vs Serverless Pools
-
Writing T-SQL Queries
-
External Tables, Views
-
Data Loading via PolyBase
🕒 Duration: 8–10 hours
đź§© Module 5: Azure Data Lake + Data IntegrationÂ
-
ADLS Gen2 Structure & Access Control
-
Mounting & Reading Data
-
Delta Lake Concepts
-
Storing Raw → Refined → Curated Zones
🕒 Duration: 6–8 hours
đź§© Module 6: Azure Databricks & PySparkÂ
-
What is Databricks? Architecture
-
Cluster Types (Interactive, Job)
-
Introduction to Notebooks, DBFS
-
PySpark Basics (RDD vs DataFrames)
-
Transformations & Actions
-
Delta Lake, Optimization (Z-Ordering, Caching)
-
Writing Structured Streaming Jobs
🕒 Duration: 12–14 hours
đź§© Module 7: Orchestration, Monitoring & CI/CD
-
ADF + Databricks Integration
-
Log Analytics, Alerts
-
Azure Monitor
-
Azure DevOps CI/CD for Data Pipelines
-
ARM Templates, Key Vault Integration
🕒 Duration: 8–10 hours
đź§© Module 8: Real-Time Data ProcessingÂ
-
Real-time Data Pipeline Use Case
🕒 Duration: 4–5 hours
đź§© Module 9: Capstone Project
-
End-to-End Project:
-
Ingest raw data from Blob/SQL
-
Transform using Databricks
-
Code Review + Best Practices
-
đź•’ Duration: 10 hours
đź’ˇ Tools Covered
-
Azure Portal
-
Azure Data Factory
-
Azure SQL DB / Synapse Analytics
-
Azure Storage Explorer
-
Azure Key Vault
-
Azure DevOps
-
Azure Databricks
đź§ľ Add-ons (If Required)
-
DP-203 Certification Prep
-
Resume / LinkedIn Optimization for Data Engineers
-
Mock Interviews