UrbanPro
true

Find the best tutors and institutes for Class 9 Tuition

Find Best Class 9 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn NCERT Exercise 9.1 with Free Lessons & Tips

Two objects, each of mass 1.5 kg are moving in the same straight line but in opposite directions. The velocity of each object is 2.5 m s−1 before the collision during which they stick together. What will be the velocity of the combined object after collision?

Mass of one of the objects, m1 = 1.5 kg

Mass of the other object, m2 = 1.5 kg

Velocity of m1 before collision, v1 = 2.5 m/s

Velocity of m2, moving in opposite direction before collision, v2 = −2.5 m/s

(Negative sign arises because mass m2 is moving in an opposite direction)

After collision, the two objects stick together.

Total mass of the combined object = m1 + m2

Velocity of the combined object = v

According to the law of conservation of momentum:

Total momentum before collision = Total momentum after collision

m1v1 + m2v2 = (m1 + m2v

1.5(2.5) + 1.5 (−2.5) = (1.5 + 1.5) v

3.75 − 3.75 = 3 v

v = 0

Hence, the velocity of the combined object after collision is 0 m/s.

Comments

An object experiences a net zero external unbalanced force. Is it possible for the object to be travelling with a non-zero velocity? If yes, state the conditions that must be placed on the magnitude and direction of the velocity. If no, provide a reason.

Yes. Even when an object experiences a net zero external unbalanced force, it is possible that the object is travelling with a non-zero velocity. This is possible only when the object has been moving with a constant velocity in a particular direction. Then, there is no net unbalanced force applied on the body. The object will keep moving with a non-zero velocity. To change the state of motion, a net non-zero external unbalanced force must be applied on the object.

Comments

When a carpet is beaten with a stick, dust comes out of it. Explain.

Inertia of an object tends to resist any change in its state of rest or state of motion. When a carpet is beaten with a stick, then the carpet comes to motion. But, the dust particles try to resist their state of rest. According to Newton’s first law of motion, the dust particles stay in a state of rest, while the carpet moves. Hence, the dust particles come out of the carpet.

Comments

Why is it advised to tie any luggage kept on the roof of a bus with a rope?

When the bus accelerates and moves forward, it acquires a state of motion. However, the luggage kept on the roof, owing to its inertia, tends to remain in its state of rest. Hence, with the forward movement of the bus, the luggage tends to remain at its original position and ultimately falls from the roof of the bus. To avoid this, it is advised to tie any luggage kept on the roof of a bus with a rope.

Comments

A batsman hits a cricket ball which then rolls on a level ground. After covering a short distance, the ball comes to rest. The ball slows to a stop because

(a) the batsman did not hit the ball hard enough.

(b) velocity is proportional to the force exerted on the ball.

(c) there is a force on the ball opposing the motion.

(d) there is no unbalanced force on the ball, so the ball would want to come to rest.

(c) A batsman hits a cricket ball, which then rolls on a level ground. After covering a short distance, the ball comes to rest because there is frictional force on the ball opposing its motion.

Frictional force always acts in the direction opposite to the direction of motion. Hence, this force is responsible for stopping the cricket ball.

Comments

A truck starts from rest and rolls down a hill with a constant acceleration. It travels a distance of 400 m in 20 s. Find its acceleration. Find the force acting on it if its mass is 7 metric tonnes (Hint: 1 metric tonne = 1000 kg).

Initial velocity, u = 0 (since the truck is initially at rest)

Distance travelled, s = 400 m

Time taken, = 20 s

According to the second equation of motion:

Where,

Acceleration = a

1 metric tonne = 1000 kg (Given)

∴ 7 metric tonnes = 7000 kg

Mass of truck, m = 7000 kg

From Newton’s second law of motion:

Force, F = Mass × Acceleration

ma = 7000 × 2 = 14000 N

Hence, the acceleration of the truck is 2 m/s2 and the force acting on the truck is 14000 N.

Comments

A stone of 1 kg is thrown with a velocity of 20 m s−1 across the frozen surface of a lake and comes to rest after travelling a distance of 50 m. What is the force of friction between the stone and the ice?

Initial velocity of the stone, u = 20 m/s

Final velocity of the stone, v = 0 (finally the stone comes to rest)

Distance covered by the stone, s = 50 m

According to the third equation of motion:

v2 = u2 + 2as

Where,

Acceleration, a

(0)2 = (20)2 + 2 × a × 50

a = −4 m/s2

The negative sign indicates that acceleration is acting against the motion of the stone.

Mass of the stone, m = 1 kg

From Newton’s second law of motion:

Force, F = Mass × Acceleration

F = ma

F = 1 × (− 4) = −4 N

Hence, the force of friction between the stone and the ice is −4 N.

Comments

A 8000 kg engine pulls a train of 5 wagons, each of 2000 kg, along a horizontal track. If the engine exerts a force of 40000 N and the track offers a friction force of 5000 N, then calculate:

(a) the net accelerating force;

(b) the acceleration of the train; and

(c) the force of wagon 1 on wagon 2.

(a) 35000 N (b) 1.944 m/s2 (c) 15552 N

(a)Force exerted by the engine, F = 40000 N

Frictional force offered by the track, Ff = 5000 N

Net accelerating force, Fa = F − Ff = 40000 − 5000 = 35000 N

Hence, the net accelerating force is 35000 N.

(b)Acceleration of the train = a

The engine exerts a force of 40000 N on all the five wagons.

Net accelerating force on the wagons, Fa = 35000 N

Mass of the wagons, m = Mass of a wagon × Number of wagons

Mass of a wagon = 2000 kg

Number of wagons = 5

∴ m = 2000 × 5 = 10000 kg

Total mass of the train, M = m + mass of engine  = 10000 + 8000 = 18000 kg

From Newton’s second law of motion:

Fa = Ma

Hence, the acceleration of the train is 1.944 m/s2.

(c) Mass of all the wagons except wagon 1 is 4 × 2000 = 8000 kg

Acceleration of the wagons = 1.944 m/s2

Thus, force exerted on all the wagons or wagon 2 by wagon 1

= 8000 × 1.944 = 15552 N

Hence, the force exerted by wagon 1 on wagon 2 is 15552  N.

Comments

An automobile vehicle has a mass of 1500 kg. What must be the force between the vehicle and road if the vehicle is to be stopped with a negative acceleration of 1.7 m s−2?

Mass of the automobile vehicle, m = 1500 kg

Final velocity, v = 0 (finally the automobile stops)

Acceleration of the automobile, a = −1.7 ms−2

From Newton’s second law of motion:

Force = Mass × Acceleration = 1500 × (−1.7) = −2550 N

Hence, the force between the automobile and the road is −2550 N, in the direction opposite to the motion of the automobile.

Comments

What is the momentum of an object of mass m, moving with a velocity v?

(a)

(mv)2

(b)

mv2

(c)e

½ mv2

(d)

mv

(d) mv

Mass of the object = m

Velocity = v

Momentum = Mass × Velocity

Momentum = mv

Comments

Using a horizontal force of 200 N, we intend to move a wooden cabinet across a floor at a constant velocity. What is the friction force that will be exerted on the cabinet?

A force of 200 N is applied in the forward direction. Thus, from Newton’s third law of motion, an equal amount of force will act in the opposite direction. This opposite force is the fictional force exerted on the cabinet. Hence, a frictional force of 200 N is exerted on the cabinet.

Comments

According to the third law of motion when we push on an object, the object pushes back on us with an equal and opposite force. If the object is a massive truck parked along the roadside, it will probably not move. A student justifies this by answering that the two opposite and equal forces cancel each other. Comment on this logic and explain why the truck does not move.

The truck has a large mass. Therefore, the static friction between the truck and the road is also very high. To move the car, one has to apply a force more than the static friction. Therefore, when someone pushes the truck and the truck does not move, then it can be said that the applied force in one direction is cancelled out by the frictioal force of equal amount acting in the opposite direction.

Therefore, the student is right in justifying that the two opposite and equal cancel each other.

Comments

A hockey ball of mass 200 g travelling at 10 m s−1 is struck by a hockey stick so as to return it along its original path with a velocity at 5 m s−1. Calculate the change of momentum occurred in the motion of the hockey ball by the force applied by the hockey stick.

Mass of the hockey ball, m = 200 g = 0.2 kg

Hockey ball travels with velocity, v1 = 10 m/s

Initial momentum = mv1

Hockey ball travels in the opposite direction with velocity, v2 = −5 m/s

Final momentum = mv2

Change in momentum = mv1 − mv2 = 0.2 [10 − (−5)] = 0.2 (15) = 3 kg m s−1

Hence, the change in momentum of the hockey ball is 3 kg m s−1.

Comments

A bullet of mass 10 g travelling horizontally with a velocity of 150 m s−1 strikes a stationary wooden block and comes to rest in 0.03 s. Calculate the distance of penetration of the bullet into the block. Also calculate the magnitude of the force exerted by the wooden block on the bullet.

Now, it is given that the bullet is travelling with a velocity of 150 m/s.

Thus, when the bullet enters the block, its velocity = Initial velocity, u = 150 m/s

Final velocity, v = 0 (since the bullet finally comes to rest)

Time taken to come to rest, t = 0.03 s

According to the first equation of motion, v = u + at

Acceleration of the bullet, a

0 = 150 + (×0.03 s)

(Negative sign indicates that the velocity of the bullet is decreasing.)

According to the third equation of motion:

v2 = u2 + 2as

0 = (150)2 + 2 (−5000) s

Hence, the distance of penetration of the bullet into the block is 2.25 m.

From Newton’s second law of motion:

Force, F = Mass × Acceleration

Mass of the bullet, m = 10 g = 0.01 kg

Acceleration of the bullet, a = 5000 m/s2

F = ma = 0.01 × 5000 = 50 N

Hence, the magnitude of force exerted by the wooden block on the bullet is 50 N.

Comments

An object of mass 1 kg travelling in a straight line with a velocity of 10 m s−1 collides with, and sticks to, a stationary wooden block of mass 5 kg. Then they both move off together in the same straight line. Calculate the total momentum just before the impact and just after the impact. Also, calculate the velocity of the combined object.

Mass of the object, m1 = 1 kg

Velocity of the object before collision, v1 = 10 m/s

Mass of the stationary wooden block, m2 = 5 kg

Velocity of the wooden block before collision, v2 = 0 m/s

∴ Total momentum before collision = m1v1 + m2v2

= 1 (10) + 5 (0) = 10 kg m s−1

It is given that after collision, the object and the wooden block stick together.

Total mass of the combined system = m1 + m2

Velocity of the combined object = v

According to the law of conservation of momentum:

Total momentum before collision = Total momentum after collision

mv1 + m2v2 = (m1 + m2v

1 (10) + 5 (0) = (1 + 5) v

The total momentum after collision is also 10 kg m/s.

Total momentum just before the impact = 10 kg m s−1

Total momentum just after the impact = (m1 + m2

Hence, velocity of the combined object after collision =

Comments

An object of mass 100 kg is accelerated uniformly from a velocity of 5 m s−1 to 8 ms−1 in 6 s. Calculate the initial and final momentum of the object. Also, find the magnitude of the force exerted on the object.

Initial velocity of the object, u = 5 m/s

Final velocity of the object, v = 8 m/s

Mass of the object, m = 100 kg

Time take by the object to accelerate, t = 6 s

Initial momentum = mu = 100 × 5 = 500 kg m s−1

Final momentum = mv = 100 × 8 = 800 kg m s−1

Force exerted on the object, F =

Initial momentum of the object is 500 kg m s−1.

Final momentum of the object is 800 kg m s−1.

Force exerted on the object is 50 N.

Comments

Akhtar, Kiran and Rahul were riding in a motorocar that was moving with a high velocity on an expressway when an insect hit the windshield and got stuck on the windscreen. Akhtar and Kiran started pondering over the situation. Kiran suggested that the insect suffered a greater change in momentum as compared to the change in momentum of the motorcar (because the change in the velocity of the insect was much more than that of the motorcar). Akhtar said that since the motorcar was moving with a larger velocity, it exerted a larger force on the insect. And as a result the insect died. Rahul while putting an entirely new explanation said that both the motorcar and the insect experienced the same force and a change in their momentum. Comment on these suggestions.

According to the law of conservation of momentum:

Momentum of the car and insect system before collision = Momentum of the car and insect system after collision

Hence, the change in momentum of the car and insect system is zero.

The insect gets stuck on the windscreen. This means that the direction of the insect is reversed. As a result, the velocity of the insect changes to a great amount. On the other hand, the car continues moving with a constant velocity. Hence, Kiran’s suggestion that the insect suffers a greater change in momentum as compared to the car is correct. The momentum of the insect after collision becomes very high because the car is moving at a high speed. Therefore, the momentum gained by the insect is equal to the momentum lost by the car.

Akhtar made a correct conclusion because the mass of the car is very large as compared to the mass of the insect.

Rahul gave a correct explanation as both the car and the insect experienced equal forces caused by the Newton’s action-reaction law. But, he made an incorrect statement as the system suffers a change in momentum because the momentum before the collision is equal to the momentum after the collision.

Comments

How much momentum will a dumbbell of mass 10 kg transfer to the floor if it falls from a height of 80 cm? Take its downward acceleration to be 10 m s−2.

Mass of the dumbbell, m = 10 kg

Distance covered by the dumbbell, s = 80 cm = 0.8 m

Acceleration in the downward direction, a = 10 m/s2

Initial velocity of the dumbbell, u = 0

Final velocity of the dumbbell (when it was about to hit the floor) = v

According to the third equation of motion:

v2 = u2 + 2as

v2 = 0 + 2 (10) 0.8

v = 4 m/s

Hence, the momentum with which the dumbbell hits the floor is
mv = 10 × 4 = 40 kg m s−1

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 9 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 9 Tuition Classes?

Find best tutors for Class 9 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 9 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more