UrbanPro
true

Find the best tutors and institutes for Class 9 Tuition

Find Best Class 9 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 8.2 with Free Lessons & Tips

ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA
(see Figure). AC is a diagonal. Show that :
(i) SR || AC and SR = AC
(ii) PQ = SR
(iii) PQRS is a parallelogram.

(i) In ΔADC, S and R are the mid-points of sides AD and CD respectively.

In a triangle, the line segment joining the mid-points of any two sides of the triangle is parallel to the third side and is half of it.

∴ SR || AC and SR = AC ... (1)

(ii) In ΔABC, P and Q are mid-points of sides AB and BC respectively. Therefore, by using mid-point theorem,

PQ || AC and PQ = AC ... (2)

Using equations (1) and (2), we obtain

PQ || SR and PQ = SR ... (3)

⇒ PQ = SR

(iii) From equation (3), we obtained

PQ || SR and PQ = SR

Clearly, one pair of opposite sides of quadrilateral PQRS is parallel and equal.

Hence, PQRS is a parallelogram.

 

Comments

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and
DA respectively. Show that the quadrilateral PQRS is a rectangle.

In ΔABC, P and Q are the mid-points of sides AB and BC respectively.

∴ PQ || AC and PQ = AC (Using mid-point theorem) ... (1)

In ΔADC,

R and S are the mid-points of CD and AD respectively.

∴ RS || AC and RS = AC (Using mid-point theorem) ... (2)

From equations (1) and (2), we obtain

PQ || RS and PQ = RS

Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to

each other, it is a parallelogram.

Let the diagonals of rhombus ABCD intersect each other at point O.

In quadrilateral OMQN,

MQ || ON ( PQ || AC)

QN || OM ( QR || BD)

Therefore, OMQN is a parallelogram.

⇒ ∠MQN = ∠NOM

⇒ ∠PQR = ∠NOM

However, ∠NOM = 90° (Diagonals of a rhombus are perpendicular to each other)

∴ ∠PQR = 90°

Clearly, PQRS is a parallelogram having one of its interior angles as 90º.

Hence, PQRS is a rectangle.

Comments

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Let us join AC and BD.

In ΔABC,

P and Q are the mid-points of AB and BC respectively.

∴ PQ || AC and PQ = AC (Mid-point theorem) ... (1)

Similarly in ΔADC,

SR || AC and SR =  AC (Mid-point theorem) ... (2)

Clearly, PQ || SR and PQ = SR

Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to

each other, it is a parallelogram.

∴ PS || QR and PS = QR (Opposite sides of parallelogram)... (3)

In ΔBCD, Q and R are the mid-points of side BC and CD respectively.

∴ QR || BD and QR =BD (Mid-point theorem) ... (4)

However, the diagonals of a rectangle are equal.

∴ AC = BD …(5)

By using equation (1), (2), (3), (4), and (5), we obtain

PQ = QR = SR = PS

Therefore, PQRS is a rhombus.

Comments

ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Figure). Show that F is the mid-point of BC

Let EF intersect DB at G.

By converse of mid-point theorem, we know that a line drawn through the mid-point of any side of a triangle and parallel to another side, bisects the third side.

In ΔABD,

EF || AB and E is the mid-point of AD.

Therefore, G will be the mid-point of DB.

As EF || AB and AB || CD,

∴ EF || CD (Two lines parallel to the same line are parallel to each other)

In ΔBCD, GF || CD and G is the mid-point of line BD. Therefore, by using converse of mid-point theorem, F is the mid-point of BC.

 

Comments

In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively
(see Figure). Show that the line segments AF and EC trisect the diagonal BD.

ABCD is a parallelogram.

∴AB || CD

And hence, AE || FC

Again, AB = CD (Opposite sides of parallelogram ABCD)

AB =CD

AE = FC (E and F are mid-points of side AB and CD)

In quadrilateral AECF, one pair of opposite sides (AE and CF) is parallel and equal to each other. Therefore, AECF is a parallelogram.

⇒ AF || EC (Opposite sides of a parallelogram)

In ΔDQC, F is the mid-point of side DC and FP || CQ (as AF || EC). Therefore, by using the converse of mid-point theorem, it can be said that P is the mid-point of DQ.

⇒ DP = PQ ... (1)

Similarly, in ΔAPB, E is the mid-point of side AB and EQ || AP (as AF || EC). Therefore, by using the converse of mid-point theorem, it can be said that

Q is the mid-point of PB.

⇒ PQ = QB ... (2)

From equations (1) and (2),

DP = PQ = BQ

Hence, the line segments AF and EC trisect the diagonal BD.

Comments

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other

Let ABCD is a quadrilateral in which P, Q, R, and S are the mid-points of sides AB, BC, CD, and DA respectively. Join PQ, QR, RS, SP, and BD.

In ΔABD, S and P are the mid-points of AD and AB respectively. Therefore, by using mid-point theorem, it can be said that

SP || BD and SP =  BD ... (1)

Similarly in ΔBCD,

QR || BD and QR = BD ... (2)

From equations (1) and (2), we obtain

SP || QR and SP = QR

In quadrilateral SPQR, one pair of opposite sides is equal and parallel to

each other. Therefore, SPQR is a parallelogram.

We know that diagonals of a parallelogram bisect each other.

Hence, PR and QS bisect each other.

Comments

ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
(ii) MD ⊥ AC
(i) D is the mid-point of AC
(iii) CM = MA = AB

(i) In ΔABC,

It is given that M is the mid-point of AB and MD || BC.

Therefore, D is the mid-point of AC. (Converse of mid-point theorem)

 

(ii) As DM || CB and AC is a transversal line for them, therefore,

∠MDC + ∠DCB = 180º (Co-interior angles)

∠MDC + 90º = 180º

∠MDC = 90º

∴ MD ⊥ AC

 

(iii) Join MC.

In ΔAMD and ΔCMD,

AD = CD (D is the mid-point of side AC)

∠ADM = ∠CDM (Each 90º)

DM = DM (Common)

∴ΔAMD ≅ ΔCMD (By SAS congruence rule)

Therefore, AM = CM (By CPCT)

However, AM = AB (M is the mid-point of AB)

Therefore, it can be said that

CM = AM = AB

 

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 9 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 9 Tuition Classes?

Find best tutors for Class 9 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 9 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more