UrbanPro
true

Find the best tutors and institutes for Class 7 Tuition

Find Best Class 7 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 12.2 with Free Lessons & Tips

Add:

(i) 3mn, − 5mn, 8mn, −4mn

(ii) t − 8tz, 3tzz, zt

(iii) − 7mn + 5, 12mn + 2, 9mn − 8, − 2mn − 3

(iv) a + b − 3, ba + 3, ab + 3

(v) 14x + 10y − 12xy − 13, 18 − 7x − 10y + 8xy, 4xy

(vi) 5m − 7n, 3n − 4m + 2, 2m − 3mn − 5

(vii) 4x2y, − 3xy2, − 5xy2, 5x2y

(viii) 3p2q2 − 4pq + 5, − 10p2q2, 15 + 9pq + 7p2q2

(ix) ab − 4a, 4bab, 4a − 4b

(x) x2 y2 − 1 , y2 − 1 − x2, 1− x2 y2

(i) 3mn + (−5mn) + 8mn + (−4mn) = mn (3 − 5 + 8 − 4)

= 2mn

(ii) (t − 8tz) + (3tzz) + (zt) = t − 8tz + 3tzz + zt

= t t − 8tz + 3tzz + z

= t (1 − 1) + tz (− 8 + 3) + z (− 1 + 1)

= −5tz

(iii) (− 7mn + 5) + (12mn + 2) + (9mn − 8) + (− 2mn − 3)

= − 7mn + 5 + 12mn + 2 + 9mn − 8 − 2mn − 3

= − 7mn + 12mn + 9mn − 2mn + 5 + 2 − 8 − 3

= mn (− 7 + 12 + 9 − 2) + (5 + 2 − 8 − 3)

= 12mn − 4

(iv) (a + b − 3) + (ba + 3) + (ab + 3)

= a + b − 3 + ba + 3 + ab + 3

= aa + a + b + b b − 3 + 3 + 3

= a (1 − 1 + 1) + b (1 + 1 − 1) + 3 (− 1 + 1 + 1)

= a + b + 3

(v) (14x + 10y − 12xy − 13) + (18 − 7x − 10y + 8yx) + 4xy

= 14x + 10y − 12xy − 13 + 18 − 7x − 10y + 8yx + 4xy

= 14x − 7x + 10y − 10y − 12xy + 8yx + 4xy − 13 + 18

= x (14 − 7) + y (10 − 10) + xy (− 12 + 8 + 4) − 13 + 18

= 7x + 5

(vi) (5m − 7n) + (3n − 4m + 2) + (2m − 3mn − 5)

= 5m − 7n + 3n − 4m + 2 + 2m − 3mn − 5

= 5m − 4m + 2m − 7n + 3n − 3mn + 2 − 5

= m (5 − 4 + 2) + n (− 7 + 3) −3mn + 2 − 5

= 3m − 4n − 3mn − 3

(vii) 4x2y − 3xy2 − 5xy2 + 5x2y = 4x2y + 5x2y − 3xy2 − 5xy2

= x2y (4 + 5) + xy2 (− 3 − 5)

= 9x2y − 8xy2

(viii) (3p2q2 − 4pq + 5) + (−10 p2q2) + (15 + 9pq + 7p2q2)

= 3p2q2 − 4pq + 5 − 10 p2q2 + 15 + 9pq + 7p2q2

= 3p2q2 − 10 p2q2 + 7p2q2 − 4pq + 9pq + 5 + 15

= p2q2 (3 − 10 + 7) + pq (− 4 + 9) + 5 + 15

= 5pq + 20

(ix) (ab − 4a) + (4b ab) + (4a − 4b)

= ab − 4a + 4b ab + 4a − 4b

= abab − 4a + 4a + 4b − 4b

= ab (1 − 1) + a (− 4 + 4) + b(4 − 4)

= 0

(x) (x2y2 − 1) + (y2 − 1 − x2) + (1 − x2y2)

= x2y2 − 1 + y2 − 1 − x2 + 1 − x2y2

= x2x2 x2 y2 + y2 y2 − 1 − 1 + 1

= x2(1 − 1 − 1) + y2 (−1 + 1 − 1) + (− 1 − 1 + 1)

= − x2y2 − 1

Comments

Subtract:

(i) − 5y2 from y2

(ii) 6xy from − 12xy

(iii) (ab) from (a + b)

(iv) a (b − 5) from b (5 − a)

(v) − m2 + 5mn from 4m2 − 3mn + 8

(vi) − x2 + 10x − 5 from 5x − 10

(vii) 5a2 − 7ab + 5b2 from 3ab − 2a2 −2b2

(viii) 4pq − 5q2 − 3p2 from 5p2 + 3q2 pq

(i) y2 − (−5y2) = y2 + 5y2 = 6y2

(ii) − 12xy − (6xy) = −18xy

(iii) (a + b) − (ab) = a + b a + b = 2b

(iv) b (5 − a) − a (b − 5) = 5babab + 5a

= 5a + 5b − 2ab

(v) (4m2 − 3mn + 8) − (− m2 + 5mn) = 4m2 − 3mn + 8 + m2 − 5 mn

= 4m2 + m2 − 3mn − 5 mn + 8

= 5m2 − 8mn + 8

(vi) (5x − 10) − (− x2 + 10x − 5) = 5x − 10 + x2 − 10x + 5

= x2 + 5x − 10x − 10 + 5

= x2 − 5x − 5

(vii) (3ab − 2a2 − 2b2) − (5a2− 7ab + 5b2)

= 3ab − 2a2 − 2b2 − 5a2 + 7ab − 5 b2

= 3ab + 7ab − 2a2 − 5a2 − 2b2 − 5 b2

= 10ab − 7a2 − 7b2

(viii) 4pq − 5q2 − 3p2 from 5p2 + 3q2pq

(5p2 + 3q2pq) − (4pq − 5q2− 3p2)

= 5p2 + 3q2 pq − 4pq + 5q2 + 3p2

= 5p2 + 3p2 + 3q2 + 5q2 pq − 4pq

= 8p2 + 8q2 − 5pq

Comments

(a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?

(b) What should be subtracted from 2a + 8b + 10 to get − 3a + 7b + 16?

(a) Let a be the required term.

a + (x2 + y2 + xy) = 2x2 + 3xy
a = 2x2 + 3xy − (x2 + y2 + xy)

a = 2x2 + 3xyx2y2xy

a = 2x2x2y2 + 3xyxy

= x2y2 + 2xy
​​​​​​​​​​​​​

(b) Let p be the required term.

(2a + 8b + 10) − p = − 3a + 7b + 16

p = 2a + 8b + 10 − (− 3a + 7b + 16)

= 2a + 8b + 10 + 3a − 7b − 16

= 2a + 3a + 8b − 7b + 10− 16

= 5a + b − 6

Comments

What should be taken away from 3x2 − 4y2 + 5xy + 20 to obtain

x2y2 + 6xy + 20?

Let p be the required term.

(3x2 − 4y2 + 5xy + 20) − p = − x2y2 + 6xy + 20

p = (3x2 − 4y2 + 5xy + 20) − (− x2y2 + 6xy + 20)

= 3x2 − 4y2 + 5xy + 20 + x2 + y2 − 6xy − 20

= 3x2 + x2 − 4y2 + y2 + 5xy − 6xy + 20 − 20

= 4x2 − 3y2xy

Comments

(a) From the sum of 3xy + 11 and − y − 11, subtract 3xy − 11.

(b) From the sum of 4 + 3x and 5 − 4x + 2x2, subtract the sum of 3x2 − 5x and
− x2 + 2x+ 5.

 

(a) (3xy + 11) + (− y − 11)

= 3xy + 11 − y − 11

= 3xy y + 11 − 11

= 3x − 2y

(3x − 2y) − (3xy − 11)

= 3x − 2y − 3x + y + 11

= 3x − 3x − 2y + y + 11

= − y + 11
​​​​​​​​​​​​​

(b) (4 + 3x) + (5 − 4x + 2x2) = 4 + 3x + 5 − 4x + 2x2

= 3x − 4x + 2x2 + 4 + 5

= − x + 2x2 + 9

(3x2 − 5x) + (− x2 + 2x + 5) = 3x2 − 5xx2 + 2x + 5

= 3x2x2 − 5x + 2x + 5

= 2x2 − 3x + 5

(− x + 2x2 + 9) − (2x2 − 3x + 5)

= − x + 2x2 + 9 − 2x2 + 3x − 5

= − x + 3x + 2x2 − 2x2 + 9 − 5

= 2x + 4

Comments

Simplify combining like terms: (i) 21b – 32 + 7b – 20b (ii) – z2 + 13z2 – 5z + 7z3 – 15z (iii) p – (p – q) – q – (q – p) (iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a (v) 5x2 y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2 (vi) (3y2 + 5y – 4) – (8y – y2 – 4)

(i) 21b − 32 + 7− 20b = 21b + 7− 20b − 32

b (21 + 7 − 20) −32

= 8b − 32

(ii) − z2 + 13z2 − 5z + 7z3 − 15z = 7z3 − z2 + 13z2 − 5z − 15z

= 7z3 + z2 (−1 + 13) + z (−5 − 15)

= 7z3 + 12z2 − 20z

(iii) p − (p − q) − q − (q − p) = p − p + q − q − q + p

− q

(iv) 3a − 2b − ab − (a − b + ab) + 3ba + − a

= 3a − 2b − ab − a + b − ab + 3ab + − a

= 3a − a − a − 2b + b − ab − ab + 3ab

a (3 − 1 − 1) + b (− 2 + 1 + 1) + ab (−1 −1 + 3)

a + ab

(v) 5x2y − 5x2 + 3yx2 − 3y2 + x2 − y2 + 8xy2 − 3y2

= 5x2y + 3yx− 5x2 + x2 − 3y2 − y2 − 3y+ 8xy2

x2(5 + 3) + x2 (−5 + 1) + y2(−3 − 1 − 3) + 8xy2

= 8x2y − 4x2 − 7y2 + 8xy2

(vi) (3y+ 5y − 4) − (8y − y2 − 4)

= 3y2 + 5y − 4 − 8y + y2 + 4

= 3y2 + y2 + 5y − 8y − 4 + 4

y2 (3 + 1) + y (5 − 8) + 4 (1 − 1)

= 4y2 − 3y

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 7 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 7 Tuition Classes?

Find best tutors for Class 7 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 7 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more