UrbanPro
true

Find the best tutors and institutes for Class 12 Tuition

Find Best Class 12 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 13.1 with Free Lessons & Tips

Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).

 

It is given that P(E) = 0.6, P(F) = 0.3, and P(E ∩ F) = 0.2

Comments

Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32

=P (A ∩ B)\P(B)

Comments

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find

(i) P(A ∩ B) (ii) P(A|B) (iii) P(A ∪ B)

It is given that P(A) = 0.8, P(B) = 0.5, and P(B|A) = 0.4

(i) P (B|A) = 0.4

(ii)

(iii)

P(AB) = P(A) + P(B)  P(AB)P(AB)=0.8 + 0.5  0.32 = 0.98

Comments

Evaluate P (A ∪ B), if 2P (A) = P (B) =and P(A|B) =

It is given that,

It is known that,

Comments

If P(A), P(B) =and P(A ∪ B) =, find

(i) P(A ∩ B) (ii) P(A|B) (iii) P(B|A)

It is given that

(i)

(ii) It is known that,

(iii) It is known that,

Comments

A coin is tossed three times, where

(i) E: head on third toss, F: heads on first two tosses

(ii) E: at least two heads, F: at most two heads

(iii) E: at most two tails, F: at least one tail

If a coin is tossed three times, then the sample space S is

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

It can be seen that the sample space has 8 elements.

(i) E = {HHH, HTH, THH, TTH}

F = {HHH, HHT}

E ∩ F = {HHH}

(ii) E = {HHH, HHT, HTH, THH}

F = {HHT, HTH, HTT, THH, THT, TTH, TTT}

E ∩ F = {HHT, HTH, THH}

Clearly,

(iii) E = {HHH, HHT, HTT, HTH, THH, THT, TTH}

F = {HHT, HTT, HTH, THH, THT, TTH, TTT}

Comments

Two coins are tossed once, where

(i) E: tail appears on one coin, F: one coin shows head

(ii) E: not tail appears, F: no head appears

If two coins are tossed once, then the sample space S is

S = {HH, HT, TH, TT}

(i) E = {HT, TH}

F = {HT, TH}

(ii) E = {HH}

F = {TT}

∴ E ∩ F = Φ

P (F) = 1 and P (E ∩ F) = 0

∴ P(E|F) =

Comments

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses

If a die is thrown three times, then the number of elements in the sample space will be 6 × 6 × 6 = 216

Comments

Mother, father and son line up at random for a family picture

E: son on one end, F: father in middle

If mother (M), father (F), and son (S) line up for the family picture, then the sample space will be

S = {MFS, MSF, FMS, FSM, SMF, SFM}

⇒ E = {MFS, FMS, SMF, SFM}

F = {MFS, SFM}

∴ E ∩ F = {MFS, SFM}

Comments

A black and a red dice are rolled.

(a) Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.

(b) Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

Let the first observation be from the black die and second from the red die.

When two dice (one black and another red) are rolled, the sample space S has 6 × 6 = 36 number of elements.

  1. Let

A: Obtaining a sum greater than 9

= {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}

B: Black die results in a 5.

= {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}

∴ A ∩ B = {(5, 5), (5, 6)}

The conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5, is given by P (A|B).

P(A|B) = P(AB)P(B) = 236636 = 26 = 13PA|B = PA∩BPB = 236636 = 26 = 13

(b) E: Sum of the observations is 8.

= {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}

F: Red die resulted in a number less than 4.

The conditional probability of obtaining the sum equal to 8, given that the red die resulted in a number less than 4, is given by P (E|F).

Comments

A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5}

Find

(i) P (E|F) and P (F|E) (ii) P (E|G) and P (G|E)

(ii) P ((E ∪ F)|G) and P ((E ∩ G)|G)

When a fair die is rolled, the sample space S will be

S = {1, 2, 3, 4, 5, 6}

It is given that E = {1, 3, 5}, F = {2, 3}, and G = {2, 3, 4, 5}

(i) E ∩ F = {3}

(ii) E ∩ G = {3, 5}

(iii) E ∪ F = {1, 2, 3, 5}

(E ∪ F) ∩ G = {1, 2, 3, 5} ∩{2, 3, 4, 5} = {2, 3, 5}

E ∩ F = {3}

(E ∩ F) ∩ G = {3}∩{2, 3, 4, 5} = {3}

Comments

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?

Let b and g represent the boy and the girl child respectively. If a family has two children, the sample space will be

S = {(b, b), (b, g), (g, b), (g, g)}

Let A be the event that both children are girls.

(i) Let B be the event that the youngest child is a girl.

The conditional probability that both are girls, given that the youngest child is a girl, is given by P (A|B).

Therefore, the required probability is.

(ii) Let C be the event that at least one child is a girl.

The conditional probability that both are girls, given that at least one child is a girl, is given by P(A|C).

Comments

An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple choice question?

The given data can be tabulated as

 

True/False

Multiple choice

Total

Easy

300

500

800

Difficult

200

400

600

Total

500

900

1400

Let us denote E = easy questions, M = multiple choice questions, D = difficult questions, and T = True/False questions

Total number of questions = 1400

Total number of multiple choice questions = 900

Therefore, probability of selecting an easy multiple choice question is

P (E ∩ M) =

Probability of selecting a multiple choice question, P (M), is

P (E|M) represents the probability that a randomly selected question will be an easy question, given that it is a multiple choice question.

Therefore, the required probability is.

Comments

Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.

When dice is thrown, number of observations in the sample space = 6 × 6 = 36

Let A be the event that the sum of the numbers on the dice is 4 and B be the event that the two numbers appearing on throwing the two dice are different.
∴ A = {(1, 3), (2, 2), (3, 1)}

B=?????????????????????(1, 2)(2, 1)(3, 1)(4, 1)(5, 1)(6, 1)(1, 3)(2, 3)(3, 2)(4, 2)(5, 2)(6, 2)(1, 4)(2, 4)(3, 4)(4, 3)(5, 3)(6, 3)(1, 5)(2, 5)(3, 5)(4, 5)(5, 4)(6, 4)(1, 6)(2, 6)(3, 6)(4, 6)(5,6)(6, 5)?????????????????????B=1, 21, 31, 41, 51, 62, 12, 32, 42, 52, 63, 13, 23, 43, 53, 64, 14, 24, 34, 54, 65, 15, 25, 35, 45,66, 16, 26, 36, 46, 5

AB = {(1, 3), (3, 1)}A∩B = 1, 3, 3, 1

∴ P(B) = 3036=563036=56 and P(AB) = 236=118PA∩B = 236=118

Let P (A|B) represent the probability that the sum of the numbers on the dice is 4, given that the two numbers appearing on throwing the two dice are different.


Therefore, the required probability is .

Comments

Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.

The outcomes of the given experiment can be represented by the following tree diagram.

The sample space of the experiment is,

Let A be the event that the coin shows a tail and B be the event that at least one die shows 3.

Probability of the event that the coin shows a tail, given that at least one die shows 3, is given by P(A|B).

Therefore,

Comments

If

(A) 0 (B) 

(C) not defined (D) 1

It is given that

Therefore, P (A|B) is not defined.

Thus, the correct answer is C.

Comments

If A and B are events such that P (A|B) = P(B|A), then

(A) A ⊂ B but A ≠ B (B) A = B

(C) A ∩ B = Φ (D) P(A) = P(B)

It is given that, P(A|B) = P(B|A)

⇒ P (A) = P (B)

Thus, the correct answer is D.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 12 Tuition Classes?

Find best tutors for Class 12 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 12 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more