Find the best tutors and institutes for Class 12 Tuition
Search in
Find the matrix X so that
It is given that:
The matrix given on the R.H.S. of the equation is a 2 × 3 matrix and the one given on the L.H.S. of the equation is a 2 × 3 matrix. Therefore, X has to be a 2 × 2 matrix.
Now, let
Therefore, we have:
Equating the corresponding elements of the two matrices, we have:
Thus, a = 1, b = 2, c = −2, d = 0
Hence, the required matrix X is
If A and B are square matrices of the same order such that AB = BA, then prove by induction that. Further, prove that for all n ∈ N
We can prove it by mathematical induction.
Choose the correct answer in the following questions:
If is such that then
A.
B.
C.
D.
C
If the matrix A is both symmetric and skew symmetric, then
A. A is a diagonal matrix
B. A is a zero matrix
C. A is a square matrix
D. None of these
A is a zero matrix.
For what values of
We have:
∴4 + 4x = 0
⇒ x = −1
Thus, the required value of x is −1.
If, show that
It is given that
If A is square matrix such that then is equal to
A. A B. I − A C. I D. 3A
Let, show that, where I is the identity matrix of order 2 and n ∈ N
It is given that
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
Therefore, the result is true for n = 1.
Let the result be true for n = k.
That is,
Now, we prove that the result is true for n = k + 1.
Consider
From (1), we have:
Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have:
If, prove that
It is given that
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
Therefore, the result is true for n = 1.
Let the result be true for n = k.
That is
Now, we prove that the result is true for n = k + 1.
Therefore, the result is true for n = k + 1.
Thus by the principle of mathematical induction, we have:
If, then prove where n is any positive integer
It is given that
We shall prove the result by using the principle of mathematical induction.
For n = 1, we have:
Therefore, the result is true for n = 1.
Let the result be true for n = k.
That is,
Now, we prove that the result is true for n = k + 1.
Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have:
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
It is given that A and B are symmetric matrices. Therefore, we have:
Thus, (AB − BA) is a skew-symmetric matrix.
Show that the matrix is symmetric or skew symmetric according as A is symmetric or skew symmetric.
We suppose that A is a symmetric matrix, then … (1)
Consider
Thus, if A is a symmetric matrix, thenis a symmetric matrix.
Now, we suppose that A is a skew-symmetric matrix.
Then,
Thus, if A is a skew-symmetric matrix, thenis a skew-symmetric matrix.
Hence, if A is a symmetric or skew-symmetric matrix, thenis a symmetric or skew-symmetric matrix accordingly.
Find the values of x, y, z if the matrix satisfy the equation
Now,
On comparing the corresponding elements, we have:
Find x, if
We have:
A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:
(a) If unit sale prices of x, y and z are Rs 2.50, Rs 1.50 and Rs 1.00, respectively, find the total revenue in each market with the help of matrix algebra.
(b) If the unit costs of the above three commodities are Rs 2.00, Rs 1.00 and 50 paise respectively. Find the gross profit.
(a) The unit sale prices of x, y, and z are respectively given as Rs 2.50, Rs 1.50, and Rs 1.00.
Consequently, the total revenue in market I can be represented in the form of a matrix as:
The total revenue in market II can be represented in the form of a matrix as:
Therefore, the total revenue in market I isRs 46000 and the same in market II isRs 53000.
(b) The unit cost prices of x, y, and z are respectively given as Rs 2.00, Rs 1.00, and 50 paise.
Consequently, the total cost prices of all the products in market I can be represented in the form of a matrix as:
Since the total revenue in market I isRs 46000, the gross profit in this marketis (Rs 46000 − Rs 31000) Rs 15000.
The total cost prices of all the products in market II can be represented in the form of a matrix as:
Since the total revenue in market II isRs 53000, the gross profit in this market is (Rs 53000 − Rs 36000) Rs 17000.
Find the matrix X so that
It is given that:
The matrix given on the R.H.S. of the equation is a 2 × 3 matrix and the one given on the L.H.S. of the equation is a 2 × 3 matrix. Therefore, X has to be a 2 × 2 matrix.
Now, let
Therefore, we have:
Equating the corresponding elements of the two matrices, we have:
Thus, a = 1, b = 2, c = −2, d = 0
Hence, the required matrix X is
If A and B are square matrices of the same order such that AB = BA, then prove by induction that. Further, prove that for all n ∈ N
A and B are square matrices of the same order such that AB = BA.
For n = 1, we have:
Therefore, the result is true for n = 1.
Let the result be true for n = k.
Now, we prove that the result is true for n = k + 1.
Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have
Now, we prove that for all n ∈ N
For n = 1, we have:
Therefore, the result is true for n = 1.
Let the result be true for n = k.
Now, we prove that the result is true for n = k + 1.
Therefore, the result is true for n = k + 1.
Thus, by the principle of mathematical induction, we have, for all natural numbers.
Choose the correct answer in the following questions:
If is such that then
A.
B.
C.
D.
Answer: C
On comparing the corresponding elements, we have:
If the matrix A is both symmetric and skew symmetric, then
A. A is a diagonal matrix
B. A is a zero matrix
C. A is a square matrix
D. None of these
If A is both symmetric and skew-symmetric matrix, then we should have
Therefore, A is a zero matrix.
How helpful was it?
How can we Improve it?
Please tell us how it changed your life *
Please enter your feedback
UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.
Find best tutors for Class 12 Tuition Classes by posting a requirement.
Get started now, by booking a Free Demo Class