UrbanPro
true

Find the best tutors and institutes for Class 12 Tuition

Find Best Class 12 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 6.4 with Free Lessons & Tips

1. Using differentials, find the approximate value of each of the following up to 3 places of decimal

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi) (xii)

(xiii) (xiv) (xv)

(i)

Consider. Let x = 25 and Δx = 0.3.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 0.03 + 5 = 5.03.

(ii)

Consider. Let x = 49 and Δx = 0.5.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 7 + 0.035 = 7.035.

(iii)

Consider. Let x = 1 and Δx = − 0.4.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 1 + (−0.2) = 1 − 0.2 = 0.8.

(iv)

Consider. Let x = 0.008 and Δx = 0.001.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 0.2 + 0.008 = 0.208.

(v)

Consider. Let x = 1 and Δx = −0.001.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 1 + (−0.0001) = 0.9999.

(vi)

Consider. Let x = 16 and Δx = −1.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 2 + (−0.03125) = 1.96875.

(vii)

Consider. Let x = 27 and Δx = −1.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 3 + (−0.0370) = 2.9629.

(viii)

Consider. Let x = 256 and Δx = −1.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 4 + (−0.0039) = 3.9961.

(ix)

Consider. Let x = 81 and Δx = 1.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 3 + 0.009 = 3.009.

(x)

Consider. Let x = 400 and Δx = 1.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 20 + 0.025 = 20.025.

(xi)

Consider. Let x = 0.0036 and Δx = 0.0001.

Then,

Now, dy is approximately equal to Δy and is given by,

Thus, the approximate value ofis 0.06 + 0.00083 = 0.06083.

(xii)

Consider. Let x = 27 and Δx = −0.43.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 3 + (−0.015) = 2.984.

(xiii)

Consider. Let x = 81 and Δx = 0.5.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 3 + 0.0046 = 3.0046.

(xiv)

Consider. Let x = 4 and Δx = − 0.032.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 8 + (−0.096) = 7.904.

(xv)

Consider. Let x = 32 and Δx = 0.15.

Then,

Now, dy is approximately equal to Δy and is given by,

Hence, the approximate value ofis 2 + 0.00187 = 2.00187.

Comments

Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2

Let x = 2 and Δx = 0.01. Then, we have:

f(2.01) = f(x + Δx) = 4(x + Δx)2 + 5(x + Δx) + 2

Now, Δy = f(x + Δx) − f(x)

f(x + Δx) = f(x) + Δy

Hence, the approximate value of f (2.01) is 28.21.

Comments

Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.

Let x = 5 and Δx = 0.001. Then, we have:

Hence, the approximate value of f (5.001) is −34.995.

Comments

Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.

Let  be the side of a cube.

Then volume of the cube is equal to .

Now if side of cube is increase by 1% then new side of cube would be 1.1.

Similarly volume of new cube is equal to 1.452.

Hence change in volume is equal to 45.2%.

Comments

Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%

The surface area of a cube (S) of side x is given by S = 6x2.

Hence, the approximate change in the surface area of the cube is 0.12x2 m2.

Comments

If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.

Let r be the radius of the sphere and Δr be the error in measuring the radius.

Then,

r = 7 m and Δr = 0.02 m

Now, the volume V of the sphere is given by,

Hence, the approximate error in calculating the volume is 3.92 π m3.

Comments

If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area.

Let r be the radius of the sphere and Δr be the error in measuring the radius.

Then,

r = 9 m and Δr = 0.03 m

Now, the surface area of the sphere (S) is given by,

S = 4πr2

Hence, the approximate error in calculating the surface area is 2.16π m2.

Comments

If f (x) = 3x2 + 15x + 5, then the approximate value of (3.02) is

A. 47.66 B. 57.66 C. 67.66 D. 77.66

Let x = 3 and Δx = 0.02. Then, we have:

Hence, the approximate value of f(3.02) is 77.66.

The correct answer is D.

Comments

The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is

A. 0.06 x3 m3B. 0.6 x3 m3C. 0.09 x3 m3D. 0.9 x3 

 

 

 

 

 

 

 

 

The volume of a cube (V) of side x is given by V = x3.

Hence, the approximate change in the volume of the cube is 0.09x3 m3.

The correct answer is C.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 12 Tuition Classes?

Find best tutors for Class 12 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 12 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more