Find the best tutors and institutes for Class 12 Tuition
Search in
1. Using differentials, find the approximate value of each of the following up to 3 places of decimal
(i) (ii) (iii)
(iv) (v) (vi)
(vii) (viii) (ix)
(x) (xi) (xii)
(xiii) (xiv) (xv)
(i)
Consider. Let x = 25 and Δx = 0.3.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 0.03 + 5 = 5.03.
(ii)
Consider. Let x = 49 and Δx = 0.5.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 7 + 0.035 = 7.035.
(iii)
Consider. Let x = 1 and Δx = − 0.4.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 1 + (−0.2) = 1 − 0.2 = 0.8.
(iv)
Consider. Let x = 0.008 and Δx = 0.001.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 0.2 + 0.008 = 0.208.
(v)
Consider. Let x = 1 and Δx = −0.001.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 1 + (−0.0001) = 0.9999.
(vi)
Consider. Let x = 16 and Δx = −1.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 2 + (−0.03125) = 1.96875.
(vii)
Consider. Let x = 27 and Δx = −1.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 3 + (−0.0370) = 2.9629.
(viii)
Consider. Let x = 256 and Δx = −1.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 4 + (−0.0039) = 3.9961.
(ix)
Consider. Let x = 81 and Δx = 1.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 3 + 0.009 = 3.009.
(x)
Consider. Let x = 400 and Δx = 1.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 20 + 0.025 = 20.025.
(xi)
Consider. Let x = 0.0036 and Δx = 0.0001.
Then,
Now, dy is approximately equal to Δy and is given by,
Thus, the approximate value ofis 0.06 + 0.00083 = 0.06083.
(xii)
Consider. Let x = 27 and Δx = −0.43.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 3 + (−0.015) = 2.984.
(xiii)
Consider. Let x = 81 and Δx = 0.5.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 3 + 0.0046 = 3.0046.
(xiv)
Consider. Let x = 4 and Δx = − 0.032.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 8 + (−0.096) = 7.904.
(xv)
Consider. Let x = 32 and Δx = 0.15.
Then,
Now, dy is approximately equal to Δy and is given by,
Hence, the approximate value ofis 2 + 0.00187 = 2.00187.
Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2
Let x = 2 and Δx = 0.01. Then, we have:
f(2.01) = f(x + Δx) = 4(x + Δx)2 + 5(x + Δx) + 2
Now, Δy = f(x + Δx) − f(x)
∴ f(x + Δx) = f(x) + Δy
≈
Hence, the approximate value of f (2.01) is 28.21.
Find the approximate value of f (5.001), where f (x) = x3 − 7x2 + 15.
Let x = 5 and Δx = 0.001. Then, we have:
Hence, the approximate value of f (5.001) is −34.995.
Find the approximate change in the volume V of a cube of side x metres caused by increasing side by 1%.
Let be the side of a cube.
Then volume of the cube is equal to .
Now if side of cube is increase by 1% then new side of cube would be 1.1.
Similarly volume of new cube is equal to 1.452.
Hence change in volume is equal to 45.2%.
Find the approximate change in the surface area of a cube of side x metres caused by decreasing the side by 1%
The surface area of a cube (S) of side x is given by S = 6x2.
Hence, the approximate change in the surface area of the cube is 0.12x2 m2.
If the radius of a sphere is measured as 7 m with an error of 0.02m, then find the approximate error in calculating its volume.
Let r be the radius of the sphere and Δr be the error in measuring the radius.
Then,
r = 7 m and Δr = 0.02 m
Now, the volume V of the sphere is given by,
Hence, the approximate error in calculating the volume is 3.92 π m3.
If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating in surface area.
Let r be the radius of the sphere and Δr be the error in measuring the radius.
Then,
r = 9 m and Δr = 0.03 m
Now, the surface area of the sphere (S) is given by,
S = 4πr2
Hence, the approximate error in calculating the surface area is 2.16π m2.
If f (x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
A. 47.66 B. 57.66 C. 67.66 D. 77.66
Let x = 3 and Δx = 0.02. Then, we have:
Hence, the approximate value of f(3.02) is 77.66.
The correct answer is D.
The approximate change in the volume of a cube of side x metres caused by increasing the side by 3% is
A. 0.06 x3 m3B. 0.6 x3 m3C. 0.09 x3 m3D. 0.9 x3
The volume of a cube (V) of side x is given by V = x3.
Hence, the approximate change in the volume of the cube is 0.09x3 m3.
The correct answer is C.
How helpful was it?
How can we Improve it?
Please tell us how it changed your life *
Please enter your feedback
UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.
Find best tutors for Class 12 Tuition Classes by posting a requirement.
Get started now, by booking a Free Demo Class