Find the best tutors and institutes for Class 12 Tuition
Search in
Calculate the mass percentage of benzene (C6H6) and carbon tetrachloride (CCl4) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.
Mass percentage of C6H6
Mass percentage of CCl4
Alternatively,
Mass percentage of CCl4 = (100 − 15.28)%
= 84.72%
Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.
Let the total mass of the solution be 100 g and the mass of benzene be 30 g.
∴Mass of carbon tetrachloride = (100 − 30)g
= 70 g
Molar mass of benzene (C6H6) = (6 × 12 + 6 × 1) g mol−1
= 78 g mol−1
∴Number of moles of
= 0.3846 mol
Molar mass of carbon tetrachloride (CCl4) = 1 × 12 + 4 × 35.5
= 154 g mol−1
∴Number of moles of CCl4
= 0.4545 mol
Thus, the mole fraction of C6H6 is given as:
= 0.458
Calculate the molarity of each of the following solutions: (a) 30 g of Co(NO3)2. 6H2O in 4.3 L of solution (b) 30 mL of 0.5 M H2SO4 diluted to 500 mL.
Molarity is given by:
(a) Molar mass of Co (NO3)2.6H2O = 59 + 2 (14 + 3 × 16) + 6 × 18
= 291 g mol−1
∴Moles of Co (NO3)2.6H2O
= 0.103 mol
Therefore, molarity
= 0.023 M
(b) Number of moles present in 1000 mL of 0.5 M H2SO4 = 0.5 mol
∴Number of moles present in 30 mL of 0.5 M H2SO4
= 0.015 mol
Therefore, molarity
= 0.03 M
Calculate the mass of urea (NH2CONH2) required in making 2.5 kg of 0.25 molal aqueous solution.
Molar mass of urea (NH2CONH2) = 2(1 × 14 + 2 × 1) + 1 × 12 + 1 × 16
= 60 g mol−1
0.25 molar aqueous solution of urea means:
1000 g of water contains 0.25 mol = (0.25 × 60)g of urea
= 15 g of urea
That is,
(1000 + 15) g of solution contains 15 g of urea
Therefore, 2.5 kg (2500 g) of solution contains
= 36.95 g
= 37 g of urea (approximately)
Hence, mass of urea required = 37 g
Note: There is a slight variation in this answer and the one given in the NCERT textbook.
Calculate (a) molality (b) molarity and (c) mole fraction of KI if the density of 20% (mass/mass) aqueous KI is 1.202 g mL-1.
(a) Molar mass of KI = 39 + 127 = 166 g mol−1
20% (mass/mass) aqueous solution of KI means 20 g of KI is present in 100 g of solution.
That is,
20 g of KI is present in (100 − 20) g of water = 80 g of water
Therefore, molality of the solution
= 1.506 m
= 1.51 m (approximately)
(b) It is given that the density of the solution = 1.202 g mL−1
∴Volume of 100 g solution
= 83.19 mL
= 83.19 × 10−3 L
Therefore, molarity of the solution
= 1.45 M
(c) Moles of KI
Moles of water
Therefore, mole fraction of KI
= 0.0263
How helpful was it?
How can we Improve it?
Please tell us how it changed your life *
Please enter your feedback
UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.
Find best tutors for Class 12 Tuition Classes by posting a requirement.
Get started now, by booking a Free Demo Class