UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Additional Exercise 9 with Free Lessons & Tips

Anvils made of single crystals of diamond, with the shape as shown in Fig. 9.14, are used to investigate behaviour of materials under very high pressures. Flat faces at the narrow end of the anvil have a diameter of 0.50 mm, and the wide ends are subjected to a compressional force of 50,000 N. What is the pressure at the tip of the anvil?

Diameter of the cones at the narrow ends, d = 0.50 mm = 0.5 × 10–3 m

Compressional force, F = 50000 N

Pressure at the tip of the anvil:

Therefore, the pressure at the tip of the anvil is 2.55 × 1011 Pa.

Comments

A rod of length 1.05 m having negligible mass is supported at its ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths as shown in Fig. 9.15. The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0 mm2, respectively. At what point along the rod should a mass be suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.

(a) 0.7 m from the steel-wire end

(b) 0.432 m from the steel-wire end

Cross-sectional area of wire A, a1 = 1.0 mm2 = 1.0 × 10–6 m2

Cross-sectional area of wire B, a2 = 2.0 mm2 = 2.0 × 10–6 m2

Young’s modulus for steel, Y1 = 2 × 1011 Nm–2

Young’s modulus for aluminium, Y2 = 7.0 ×1010 Nm–2

(a) Let a small mass m be suspended to the rod at a distance y from the end where wire A is attached.

If the two wires have equal stresses, then:

Where,

F1 = Force exerted on the steel wire

F2 = Force exerted on the aluminum wire

The situation is shown in the following figure.

Taking torque about the point of suspension, we have:

Using equations (i) and (ii), we can write:

In order to produce an equal stress in the two wires, the mass should be suspended at a distance of 0.7 m from the end where wire A is attached.

(b)

If the strain in the two wires is equal, then:

Taking torque about the point where mass m, is suspended at a distance y1 from the side where wire A attached, we get:

F1y1 = F2 (1.05 – y1)

… (iii)

Using equations (iii) and (iv), we get:

In order to produce an equal strain in the two wires, the mass should be suspended at a distance of 0.432 m from the end where wire A is attached.

Comments

A mild steel wire of length 1.0 m and cross-sectional area 0.50 × 10–2 cmis stretched, well within its elastic limit, horizontally between two pillars. A mass of 100 g is suspended from the mid-point of the wire. Calculate the depression at the midpoint.

Length of the steel wire = 1.0 m

Area of cross-section, A = 0.50 × 10–2 cm2 = 0.50 × 10–6 m2

A mass 100 g is suspended from its midpoint.

m = 100 g = 0.1 kg

Hence, the wire dips, as shown in the given figure.

Original length = XZ

Depression = l

The length after mass m, is attached to the wire = XO + OZ

Increase in the length of the wire:

Δl = (XO + OZ) – XZ

Where,

XO = OZ =

Let T be the tension in the wire.

mg = 2T cosθ

Using the figure, it can be written as:

Expanding the expression and eliminating the higher terms:

Young’s modulus of steel, Y =

Hence, the depression at the midpoint is 0.0106 m.

 

Comments

Two strips of metal are riveted together at their ends by four rivets, each of diameter 6.0 mm. What is the maximum tension that can be exerted by the riveted strip if the shearing stress on the rivet is not to exceed 6.9 × 107 Pa? Assume that each rivet is to carry one-quarter of the load.

Diameter of the metal strip, d = 6.0 mm = 6.0 × 10–3 m

Maximum shearing stress = 6.9 × 107 Pa

Maximum force = Maximum stress × Area

= 6.9 × 107 × π × (r) 2

= 6.9 × 107 × π × (3 ×10–3)2

= 1949.94 N

Each rivet carries one quarter of the load.

∴ Maximum tension on each rivet = 4 × 1949.94 = 7799.76 N

Comments

The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven km beneath the surface of the water. The water pressure at the bottom of the trench is about 1.1 × 108 Pa. A steel ball of initial volume 0.32 m3 is dropped into the ocean and falls to the bottom of the trench. What is the change in the volume of the ball when it reaches to the bottom?

Water pressure at the bottom, p = 1.1 × 108 Pa

Initial volume of the steel ball, V = 0.32 m3

Bulk modulus of steel, B = 1.6 × 1011 Nm–2

The ball falls at the bottom of the Pacific Ocean, which is 11 km beneath the surface.

Let the change in the volume of the ball on reaching the bottom of the trench be ΔV.

Therefore, the change in volume of the ball on reaching the bottom of the trench is 2.2 × 10–4 m3.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more