UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 10.3 with Free Lessons & Tips

Reduce the following equations into slope-intercept form and find their slopes and the y-intercepts. (i) x + 7y = 0 (ii) 6x + 3y – 5 = 0 (iii) y = 0

(i) The given equation is + 7= 0.

It can be written as

This equation is of the form y = mx + c, where.

Therefore, equation (1) is in the slope-intercept form, where the slope and the y-intercept are and 0 respectively.

(ii) The given equation is 6x + 3y – 5 = 0.

It can be written as

Therefore, equation (2) is in the slope-intercept form, where the slope and the y-intercept are–2 and respectively.

(iii) The given equation is y = 0.

It can be written as

y = 0.x + 0 … (3)

This equation is of the form y = mx + c, where m = 0 and c = 0.

Therefore, equation (3) is in the slope-intercept form, where the slope and the y-intercept are 0 and 0 respectively.

Comments

Reduce the following equations into intercept form and find their intercepts on the axes.

(i) 3x + 2y – 12 = 0 (ii) 4x – 3y = 6 (iii) 3y + 2 = 0.

(i) The given equation is 3x + 2y – 12 = 0.

It can be written as

This equation is of the form, where a = 4 and b = 6.

Therefore, equation (1) is in the intercept form, where the intercepts on the x and y axes are 4 and 6 respectively.

(ii) The given equation is 4x – 3y = 6.

It can be written as

This equation is of the form, where a = and b = –2.

Therefore, equation (2) is in the intercept form, where the intercepts on the x and y axes are and –2 respectively.

(iii) The given equation is 3y + 2 = 0.

It can be written as

This equation is of the form, where a = 0 and b = .

Therefore, equation (3) is in the intercept form, where the intercept on the y-axis is and it has no intercept on the x-axis.

Comments

Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

(i) (ii) y – 2 = 0 (iii) x y = 4

(i) The given equation is.

It can be reduced as:

On dividing both sides by, we obtain

Equation (1) is in the normal form.

On comparing equation (1) with the normal form of equation of line

x cos ω + y sin ω = p, we obtain ω = 120° and p = 4.

Thus, the perpendicular distance of the line from the origin is 4, while the angle between the perpendicular and the positive x-axis is 120°.

(ii) The given equation is y – 2 = 0.

It can be reduced as 0.x + 1.y = 2

On dividing both sides by, we obtain 0.x + 1.y = 2

x cos 90° + y sin 90° = 2 … (1)

Equation (1) is in the normal form.

On comparing equation (1) with the normal form of equation of line

x cos ω + y sin ω = p, we obtain ω = 90° and p = 2.

Thus, the perpendicular distance of the line from the origin is 2, while the angle between the perpendicular and the positive x-axis is 90°.

(iii) The given equation is x y = 4.

It can be reduced as 1.x + (–1) y = 4

On dividing both sides by, we obtain

Equation (1) is in the normal form.

On comparing equation (1) with the normal form of equation of line

x cos ω + y sin ω = p, we obtain ω = 315° and .

Thus, the perpendicular distance of the line from the origin is, while the angle between the perpendicular and the positive x-axis is 315°.

Comments

Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).

The given equation of the line is 12(x + 6) = 5(y – 2).

⇒ 12x + 72 = 5y – 10

⇒12x – 5y + 82 = 0 … (1)

On comparing equation (1) with general equation of line Ax + By + C = 0, we obtain A = 12, B = –5, and C = 82.

It is known that the perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by.

The given point is (x1, y1) = (–1, 1).

Therefore, the distance of point (–1, 1) from the given line

Comments

Find the points on the x-axis, whose distances from the line are 4 units.

The given equation of line is

On comparing equation (1) with general equation of line Ax + By + C = 0, we obtain A = 4, B = 3, and C = –12.

Let (a, 0) be the point on the x-axis whose distance from the given line is 4 units.

It is known that the perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by.

Therefore,

Thus, the required points on the x-axis are (–2, 0) and (8, 0).

Comments

Find the distance between parallel lines

(i) 15x + 8y – 34 = 0 and 15x + 8y + 31 = 0

(ii) l (x + y) + p = 0 and l (x + y) – r = 0

It is known that the distance (d) between parallel lines Ax + By + C1 = 0 and Ax + By + C2 = 0 is given by.

(i) The given parallel lines are 15x + 8y – 34 = 0 and 15x + 8y + 31 = 0.

Here, A = 15, B = 8, C1 = –34, and C2 = 31.

Therefore, the distance between the parallel lines is

(ii) The given parallel lines are l (x + y) + p = 0 and l (x + y) – r = 0.

lx + ly + p = 0 and lx + lyr = 0

Here, A = l, B = l, C1 = p, and C2 = –r.

Therefore, the distance between the parallel lines is

Comments

Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).

The equation of the given line is

, which is of the form y = mx + c

∴ Slope of the given line

It is known that parallel lines have the same slope.

∴ Slope of the other line =

Now, the equation of the line that has a slope of and passes through the point (–2, 3) is

Comments

Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.

The given equation of line is.

, which is of the form y = mx + c

∴Slope of the given line

The slope of the line perpendicular to the line having a slope of is

The equation of the line with slope –7 and x-intercept 3 is given by

y = m (xd)

y = –7 (x – 3)

y = –7x + 21

⇒ 7x + y = 21

Comments

Find angles between the lines

The given lines are.

The slope of line (1) is, while the slope of line (2) is.

The acute angle i.e., θ between the two lines is given by

Thus, the angle between the given lines is either 30° or 180° – 30° = 150°.

Comments

The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.

The slope of the line passing through points (h, 3) and (4, 1) is

The slope of line 7x – 9y – 19 = 0 or is.

It is given that the two lines are perpendicular.

Thus, the value of h is.

Comments

Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.

The slope of line Ax + By + C = 0 or is

It is known that parallel lines have the same slope.

∴ Slope of the other line =

The equation of the line passing through point (x1, y1) and having a slope is

Hence, the line through point (x1, y1) and parallel to line Ax + By + C = 0 is

A (x –x1) + B (y – y1) = 0

Comments

Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line

It is given that the slope of the first line, m1 = 2.

Let the slope of the other line be m2.

The angle between the two lines is 60°.

The equation of the line passing through point (2, 3) and having a slope of is

In this case, the equation of the other line is.

The equation of the line passing through point (2, 3) and having a slope of is

In this case, the equation of the other line is.

Thus, the required equation of the other line is or .

Comments

Find the equation of the right bisector of the line segment joining the points (3, 4) and (1, 2).

The right bisector of a line segment bisects the line segment at 90°.

The end-points of the line segment are given as A (3, 4) and B (–1, 2).

Accordingly, mid-point of AB

Slope of AB

∴Slope of the line perpendicular to AB =

The equation of the line passing through (1, 3) and having a slope of –2 is

(y – 3) = –2 (x – 1)

y – 3 = –2x + 2

2x + y = 5

Thus, the required equation of the line is 2x + y = 5.

Comments

Find the coordinates of the foot of perpendicular from the point (1, 3) to the line 3x – 4y – 16 = 0.

Let (a, b) be the coordinates of the foot of the perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.

Slope of the line joining (–1, 3) and (a, b), m1

Slope of the line 3x – 4y – 16 = 0 or

Since these two lines are perpendicular, m1m2 = –1

Point (a, b) lies on line 3x – 4y = 16.

∴3a – 4b = 16 … (2)

On solving equations (1) and (2), we obtain

Thus, the required coordinates of the foot of the perpendicular are.

Comments

The perpendicular from the origin to the line y = mx + c meets it at the point

(1, 2). Find the values of m and c.

The given equation of line is y = mx + c.

It is given that the perpendicular from the origin meets the given line at (–1, 2).

Therefore, the line joining the points (0, 0) and (–1, 2) is perpendicular to the given line.

∴Slope of the line joining (0, 0) and (–1, 2)

The slope of the given line is m.

Since point (–1, 2) lies on the given line, it satisfies the equation y = mx + c.

Thus, the respective values of m and c are.

Comments

If p and q are the lengths of perpendiculars from the origin to the lines x cos θy sin θ = k cos 2θ and x sec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2

The equations of given lines are

x cos θy sinθ = k cos 2θ … (1)

x secθ + y cosec θ= k … (2)

The perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by.

On comparing equation (1) to the general equation of line i.e., Ax + By + C = 0, we obtain A = cosθ, B = –sinθ, and C = –k cos 2θ.

It is given that p is the length of the perpendicular from (0, 0) to line (1).

On comparing equation (2) to the general equation of line i.e., Ax + By + C = 0, we obtain A = secθ, B = cosecθ, and C = ­–k.

It is given that q is the length of the perpendicular from (0, 0) to line (2).

From (3) and (4), we have

Hence, we proved that p2 + 4q2 = k2.

Comments

In the triangle ABC with vertices A (2, 3), B (4, 1) and C (1, 2), find the equation and length of altitude from the vertex A.

Let AD be the altitude of triangle ABC from vertex A.

Accordingly, AD⊥BC

The equation of the line passing through point (2, 3) and having a slope of 1 is

(y – 3) = 1(x – 2)

xy + 1 = 0

y x = 1

Therefore, equation of the altitude from vertex A = y x = 1.

Length of AD = Length of the perpendicular from A (2, 3) to BC

The equation of BC is

The perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by.

On comparing equation (1) to the general equation of line Ax + By + C = 0, we obtain A = 1, B = 1, and C = –3.

∴Length of AD

Thus, the equation and the length of the altitude from vertex A are yx = 1 and units respectively.

Comments

If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that.

It is known that the equation of a line whose intercepts on the axes are a and b is

The perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by.

On comparing equation (1) to the general equation of line Ax + By + C = 0, we obtain A = b, B = a, and C = –ab.

Therefore, if p is the length of the perpendicular from point (x1, y1) = (0, 0) to line (1), we obtain

On squaring both sides, we obtain

Hence, we showed that.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more