UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 1.3 with Free Lessons & Tips

How many elements has P(A), if A = Φ?

We know that if A is a set with m elements i.e., n(A) = m, then n[P(A)] = 2m.

If A = Φ, then n(A) = 0.

n[P(A)] = 20 = 1

Hence, P(A) has one element.

Comments

What universal set (s) would you propose for each of the following:

(i) The set of right triangles

(ii) The set of isosceles triangles


(i) Collection of the right triangle is a subset of a set of triangles. The comprehensive set can be a set of triangles, or set of polygons
(ii)set of an isosceles triangle is a subset of the game of triangles. the universal set can be a set of triangles or set of polygons

Comments

Write the following as intervals:

(i) {x: x ∈ R, –4 < x ≤ 6}

(ii) {x: x ∈ R, –12 < x < –10}

(iii) {x: x ∈ R, 0 ≤ x < 7}

(iv) {x: x ∈ R, 3 ≤ x ≤ 4}

(i) {x: x ∈ R, –4 < x ≤ 6} = (–4, 6]

(ii) {x: x ∈ R, –12 < x < –10} = (–12, –10)

(iii) {x: x ∈ R, 0 ≤ x < 7} = [0, 7)

(iv) {x: x ∈ R, 3 ≤ x ≤ 4} = [3, 4]

Comments

Write the following intervals in set-builder form:

(i) (–3, 0)

(ii) [6, 12]

(iii) (6, 12]

(iv) [–23, 5)

(i) {x:x ∈ R,-3 <x <0}

(ii) {x: x ∈ R ,6 ≤ x ≤ 12}

(iii) {x: x ∈ R, 6 < x ≤ 12}

(iv) {x: x ∈ R,-23 ≤ x < 5}

Comments

Make correct statements by filling in the symbols ⊂ or ⊄ in the blank spaces:

(i) {2, 3, 4} … {1, 2, 3, 4, 5}

(ii) {a, b, c} … {b, c, d}

(iii) {x: x is a student of Class XI of your school} … {x: x student of your school}

(iv) {x: x is a circle in the plane} … {x: x is a circle in the same plane with radius 1 unit}

(v) {x: x is a triangle in a plane}…{x: x is a rectangle in the plane}

(vi) {x: x is an equilateral triangle in a plane}… {x: x is a triangle in the same plane}

(vii) {x: x is an even natural number} … {x: x is an integer}

(i)

(ii)

(iii) {x: x is a student of class XI of your school}⊂ {x: x is student of your school}

(iv) {x: x is a circle in the plane} ⊄ {x: x is a circle in the same plane with radius 1 unit}

(v) {x: x is a triangle in a plane} ⊄ {x: x is a rectangle in the plane}

(vi) {x: x is an equilateral triangle in a plane}⊂ {x: x in a triangle in the same plane}

(vii) {x: x is an even natural number} ⊂ {x: x is an integer}

Comments

Examine whether the following statements are true or false:

(i) {a, b} ⊄ {b, c, a}

(ii) {a, e} ⊂ {x: x is a vowel in the English alphabet}

(iii) {1, 2, 3} ⊂{1, 3, 5}

(iv) {a} ⊂ {a. b, c}

(v) {a} ∈ (a, b, c)

(vi) {x: x is an even natural number less than 6} ⊂ {x: x is a natural number which divides 36}

(i) False. Each element of {a, b} is also an element of {b, c, a}.

(ii) True. a, e are two vowels of the English alphabet.

(iii) False. 2∈{1, 2, 3}; however, 2∉{1, 3, 5}

(iv) True. Each element of {a} is also an element of {a, b, c}.

(v) False. The elements of {a, b, c} are a, b, c. Therefore, {a}⊂{a, b, c}

(vi) True. {x:x is an even natural number less than 6} = {2, 4}

{x:x is a natural number which divides 36}= {1, 2, 3, 4, 6, 9, 12, 18, 36}

Comments

Let A= {1, 2, {3, 4,}, 5}. Which of the following statements are incorrect and why?

(i) {3, 4}⊂ A

(ii) {3, 4}}∈ A

(iii) {{3, 4}}⊂ A

(iv) 1∈ A

(v) 1⊂ A

(vi) {1, 2, 5} ⊂ A

(vii) {1, 2, 5} ∈ A

(viii) {1, 2, 3} ⊂ A

(ix) Φ ∈ A

(x) Φ ⊂ A

(xi) {Φ} ⊂ A

A = {1, 2, {3, 4}, 5}

(i) The statement {3, 4} ⊂ A is incorrect because 3 ∈ {3, 4}; however, 3∉A.

(ii) The statement {3, 4} ∈A is correct because {3, 4} is an element of A.

(iii) The statement {{3, 4}} ⊂ A is correct because {3, 4} ∈ {{3, 4}} and {3, 4} ∈ A.

(iv) The statement 1∈A is correct because 1 is an element of A.

(v) The statement 1⊂ A is incorrect because an element of a set can never be a subset of itself.

(vi) The statement {1, 2, 5} ⊂ A is correct because each element of {1, 2, 5} is also an element of A.

(vii) The statement {1, 2, 5} ∈ A is incorrect because {1, 2, 5} is not an element of A.

(viii) The statement {1, 2, 3} ⊂ A is incorrect because 3 ∈ {1, 2, 3}; however, 3 ∉ A.

(ix) The statement Φ ∈ A is incorrect because Φ is not an element of A.

(x) The statement Φ ⊂ A is correct because Φ is a subset of every set.

(xi) The statement {Φ} ⊂ A is incorrect because Φ∈ {Φ}; however, Φ ∈ A.

Comments

Write down all the subsets of the following sets:

(i) {a}

(ii) {a, b}

(iii) {1, 2, 3}

(iv) Φ

(i) The subsets of {a} are Φ and {a}.

(ii) The subsets of {a, b} areΦ, {a}, {b}, and {a, b}.

(iii) The subsets of {1, 2, 3} areΦ, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, and

{1, 2, 3}

(iv) The only subset of Φ isΦ.

Comments

Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, which of the following may be considered as universals set (s) for all the three sets A, B and C

(i) {0, 1, 2, 3, 4, 5, 6}

(ii) Φ

(iii) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

(iv) {1, 2, 3, 4, 5, 6, 7, 8}

(i) It can be seen that A ⊂ {0, 1, 2, 3, 4, 5, 6}

B ⊂ {0, 1, 2, 3, 4, 5, 6}

However, C ⊄ {0, 1, 2, 3, 4, 5, 6}

Therefore, the set {0, 1, 2, 3, 4, 5, 6} cannot be the universal set for the sets A, B, and C.

(ii) A ⊄ Φ, B ⊄ Φ, C ⊄ Φ

Therefore, Φ cannot be the universal set for the sets A, B, and C.

(iii) A ⊂ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

B ⊂ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

C ⊂ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Therefore, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the universal set for the sets A, B, and C.

(iv) A ⊂ {1, 2, 3, 4, 5, 6, 7, 8}

B ⊂ {1, 2, 3, 4, 5, 6, 7, 8}

However, C ⊄ {1, 2, 3, 4, 5, 6, 7, 8}

Therefore, the set {1, 2, 3, 4, 5, 6, 7, 8} cannot be the universal set for the sets A, B, and C.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more