UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 9.3 with Free Lessons & Tips

Which term of the following sequences:

(a)  (b)  (c) 

(a) The given sequence is 

Here, a = 2 and r = 

Let the nth term of the given sequence be 128.

Thus, the 13th term of the given sequence is 128.

(b) The given sequence is 

Here, 

Let the nth term of the given sequence be 729.

Thus, the 12th term of the given sequence is 729.

(c) The given sequence is 

Here, 

Let the nth term of the given sequence be .

Thus, the 9th term of the given sequence is .

Comments

Find the 20th and nthterms of the G.P.

The given G.P. is 

Here, a = First term = 

r = Common ratio = 

Comments

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.

Common ratio, r = 2

Let a be the first term of the G.P.

∴ a8 = ar 8–1 = ar7

⇒ ar7 = 192

a(2)7 = 192

a(2)7 = (2)6 (3)

Comments

The 5th, 8th and 11th terms of a G.P. are pq and s, respectively. Show that q2 = ps.

Let a be the first term and r be the common ratio of the G.P.

According to the given condition,

a5 = a r5–1 a r4 = p … (1)

aa r8–1 a r7 = q … (2)

a11 = a r11–1 a r10 = … (3)

Dividing equation (2) by (1), we obtain

Dividing equation (3) by (2), we obtain

Equating the values of r3 obtained in (4) and (5), we obtain

Thus, the given result is proved.

Comments

For what values of x, the numbers are in G.P?

The given numbers are .

Common ratio 

Also, common ratio = 

Thus, for x = ± 1, the given numbers will be in G.P.

Comments

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015 …

The given G.P. is 0.15, 0.015, 0.00015, …

Here, a = 0.15 and 

Comments

Find the sum to n terms in the geometric progression

The given G.P. is 

Here, 

Comments

Find the sum to n terms in the geometric progression

The given G.P. is 

Here, first term = a1 = 1

Common ratio = r = – a

Comments

Find the sum to n terms in the geometric progression

The given G.P. is 

Here, a = x3 and r = x2

Comments

Evaluate

The terms of this sequence 3, 32, 33, … forms a G.P.

Substituting this value in equation (1), we obtain

Comments

The sum of first three terms of a G.P. is and their product is 1. Find the common ratio and the terms.

Let be the first three terms of the G.P.

From (2), we obtain

a3 = 1

⇒ a = 1 (Considering real roots only)

Substituting a = 1 in equation (1), we obtain

Thus, the three terms of G.P. are .

Comments

How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?

The given G.P. is 3, 32, 33, …

Let n terms of this G.P. be required to obtain the sum as 120.

Here, a = 3 and r = 3

∴ n = 4

Thus, four terms of the given G.P. are required to obtain the sum as 120.

Comments

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.

Let the G.P. be aarar2ar3, …

According to the given condition,

ar + ar2 = 16 and arar4 + ar= 128

⇒ a (1 + r + r2) = 16 … (1)

ar3(1 + r + r2) = 128 … (2)

Dividing equation (2) by (1), we obtain

Substituting r = 2 in (1), we obtain

a (1 + 2 + 4) = 16

⇒ a (7) = 16

Comments

Given a G.P. with a = 729 and 7th term 64, determine S7.

a = 729

a7 = 64

Let r be the common ratio of the G.P.

It is known that, an = a rn–1

a7 = ar7–1 = (729)r6

⇒ 64 = 729 r6

Also, it is known that, 

Comments

Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.

Let a be the first term and r be the common ratio of the G.P.

According to the given conditions,

a5 = 4 × a3

ar4 = 4ar2

⇒ r2 = 4

∴ = ± 2

From (1), we obtain

Thus, the required G.P. is

 4, –8, 16, –32, …

Comments

If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.

Let a be the first term and r be the common ratio of the G.P.

According to the given condition,

a4 = a r3 = x … (1)

a10 = a r9 = y … (2)

a16= a r15 z … (3)

Dividing (2) by (1), we obtain

Dividing (3) by (2), we obtain

∴ 

Thus, xyz are in G. P.

Comments

Find the sum to n terms of the sequence, 8, 88, 888, 8888…

The given sequence is 8, 88, 888, 8888…

This sequence is not a G.P. However, it can be changed to G.P. by writing the terms as

Sn = 8 + 88 + 888 + 8888 + …………….. to n terms

Comments

Find the sum of the products of the corresponding terms of the sequences 2, 4, 8, 16, 32 and 128, 32, 8, 2, .

Required sum = 

Here, 4, 2, 1, is a G.P.

First term, a = 4

Common ratio, r =

It is known that, 

∴Required sum = 

Comments

Show that the products of the corresponding terms of the sequences  form a G.P, and find the common ratio.

It has to be proved that the sequence, aAarARar2AR2, …arn–1ARn–1, forms a G.P.

Thus, the above sequence forms a G.P. and the common ratio is rR.

Comments

Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.

Let a be thefirst term and r be the common ratio of the G.P.

a1 = aa2 = ara3 = ar2a4 = ar3

By the given condition,

a3 = a1 + 9

⇒ ar2 = a + 9 … (1)

a2 = a4 + 18

⇒ ar ar3 + 18 … (2)

From (1) and (2), we obtain

a(r2 ­­– 1) = 9 … (3)

ar (1– r2) = 18 … (4)

Dividing (4) by (3), we obtain

Substituting the value of r in (1), we obtain

4a + 9

⇒ 3a = 9

∴ a = 3

Thus, the first four numbers of the G.P. are 3, 3(– 2), 3(–2)2, and 3­(–2)3 i.e., 3¸–6, 12, and –24.

Comments

If the terms of a G.P. are a, b and c, respectively. Prove that

Let A be the first term and R be the common ratio of the G.P.

According to the given information,

ARp–1 a

ARq–1 b

ARr–1 c

aq–rbr–pcp–q

Aq× R(p–1) (q–r) × Arp × R(q–1) (r-p) × Apq × R(–1)(pq)

Aq­ – r + r – p + p – q × R (pr – pr – q + r) + (rq – r p – pq) + (pr – p – qr + q)

A0 × R0

= 1

Thus, the given result is proved.

Comments

If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.

The first term of the G.P is a and the last term is b.

Therefore, the G.P. is aarar2ar3, … arn–1, where r is the common ratio.

b = arn–1 … (1)

P = Product of n terms

= (a) (ar) (ar2) … (arn–1)

= (a × a ×…a) (r × r2 × …rn–1)

anr 1 + 2 +…(n–1) … (2)

Here, 1, 2, …(n – 1) is an A.P.

∴1 + 2 + ……….+ (n – 1)

Thus, the given result is proved.

Comments

Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from .

Let a be the first term and be the common ratio of the G.P.

Since there are n terms from (n +1)th to (2n)th term,

Sum of terms from(n + 1)th to (2n)th term 

a +1 = ar n + 1– 1 = arn

Thus, required ratio = 

Thus, the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is.

Comments

If a, b, c and d are in G.P. show that .

abcd are in G.P.

Therefore,

bc = ad … (1)

b2 = ac … (2)

c2 = bd … (3)

It has to be proved that,

(a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc – cd)2

R.H.S.

= (ab + bc + cd)2

= (ab + ad cd)2 [Using (1)]

= [ab + d (a + c)]2

a2b2 + 2abd (a + c) + d2 (a + c)2

a2b2 +2a2bd + 2acbd + d2(a2 + 2ac + c2)

a2b2 + 2a2c2 + 2b2c2 + d2a2 + 2d2b2 + d2c2 [Using (1) and (2)]

a2b2 + a2c2 + a2c2 + b2cb2c2 + d2a2 + d2b2 + d2b2 + d2c2

a2b2 + a2c2 + a2db× b2 + b2c2 + b2d2 + c2b2 + c× c2 + c2d2

[Using (2) and (3) and rearranging terms]

a2(b2 + c2 + d2) + b2 (b2 + c2 + d2) + c2 (b2c2 + d2)

= (a2 + b2 + c2) (b2 + c2 + d2)

= L.H.S.

∴ L.H.S. = R.H.S.

Comments

Insert two numbers between 3 and 81 so that the resulting sequence is G.P.

Let G1 and G2 be two numbers between 3 and 81 such that the series, 3, G1G2, 81, forms a G.P.

Let a be the first term and r be the common ratio of the G.P.

∴81 = (3) (r)3

⇒ r3 = 27

∴ r = 3 (Taking real roots only)

For r = 3,

G1 = ar = (3) (3) = 9

G2 = ar2 = (3) (3)2 = 27

Thus, the required two numbers are 9 and 27.

Comments

Find the value of n so that may be the geometric mean between a and b.

G. M. of a and b is .

By the given condition, 

Squaring both sides, we obtain

Comments

The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio.

Let the two numbers be a and b.

G.M. = 

According to the given condition,

Also,

Adding (1) and (2), we obtain

Substituting the value of a in (1), we obtain

Thus, the required ratio is.

Comments

If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are.

It is given that A and G are A.M. and G.M. between two positive numbers. Let these two positive numbers be a and b.

From (1) and (2), we obtain

a + b = 2A … (3)

ab = G2 … (4)

Substituting the value of a and b from (3) and (4) in the identity (a – b)2 = (a + b)2 – 4ab, we obtain

(a – b)2 = 4A2 – 4G2 = 4 (A2G2)

(a – b)2 = 4 (A + G) (A – G)

From (3) and (5), we obtain

Substituting the value of a in (3), we obtain

Thus, the two numbers are.

Comments

The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2nd hour, 4th hour and nth hour?

It is given that the number of bacteria doubles every hour. Therefore, the number of bacteria after every hour will form a G.P.

Here, a = 30 and r = 2

∴ a3 = ar2 = (30) (2)2 = 120

Therefore, the number of bacteria at the end of 2nd hour will be 120.

a5 = ar4 = (30) (2)4 = 480

The number of bacteria at the end of 4th hour will be 480.

an +1 arn = (30) 2n

Thus, number of bacteria at the end of nth hour will be 30(2)n.

Comments

What will Rs 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10% compounded annually?

The amount deposited in the bank is Rs 500.

At the end of first year, amount = = Rs 500 (1.1)

At the end of 2nd year, amount = Rs 500 (1.1) (1.1)

At the end of 3rd year, amount = Rs 500 (1.1) (1.1) (1.1) and so on

∴Amount at the end of 10 years = Rs 500 (1.1) (1.1) … (10 times)

= Rs 500(1.1)10

Comments

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7th term.

Let a be the first term and r be the common ratio of the G.P.

∴ a = –3

It is known that, an = arn–1

aar3 = (–3) r3

a2 = a r1 = (–3) r

According to the given condition,

(–3) r3 = [­(–3) r]2

⇒ –3r3 = 9 r2

⇒ r = –3

a7 = a r 7–1 a r6 = (–3) (–3)6 = – (3)7 = –2187

Thus, the seventh term of the G.P. is –2187.

Comments

If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation.

Let the root of the quadratic equation be a and b.

According to the given condition,

The quadratic equation is given by,

x2– x (Sum of roots) + (Product of roots) = 0

x2 – x (a + b) + (ab) = 0

x2 – 16x + 25 = 0 [Using (1) and (2)]

Thus, the required quadratic equation is x2 – 16x + 25 = 0

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more