UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 6.2 with Free Lessons & Tips

Solve the given inequality graphically in two-dimensional plane: x + y5:

The graphical representation of x + y = 5 is given as dotted line in the figure below.

This line divides the xy-plane in two half planes, I and II.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

0 + 0 < 5 or, 0 < 5, which is true

Therefore, half plane II is not the solution region of the given inequality. Also, it is evident that any point on the line does not satisfy the given strict inequality.

Thus, the solution region of the given inequality is the shaded half plane I excluding the points on the line.

This can be represented as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: 2x + y ≥ 6

The graphical representation of 2x + y = 6 is given in the figure below.

This line divides the xy-plane in two half planes, I and II.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

2(0) + 0 ≥ 6 or 0 ≥ 6, which is false

Therefore, half plane I is not the solution region of the given inequality. Also, it is evident that any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the shaded half plane II including the points on the line.

This can be represented as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: 3x + 4y ≤ 12

3x + 4y ≤ 12

The graphical representation of 3x + 4y = 12 is given in the figure below.

This line divides the xy-plane in two half planes, I and II.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

3(0) + 4(0) ≤ 12 or 0 ≤ 12, which is true

Therefore, half plane II is not the solution region of the given inequality. Also, it is evident that any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the shaded half plane I including the points on the line.

This can be represented as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: y + 8 ≥ 2x

The graphical representation of y + 8 = 2x is given in the figure below.

This line divides the xy-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

0 + 8 ≥ 2(0) or 8 ≥ 0, which is true

Therefore, lower half plane is not the solution region of the given inequality. Also, it is evident that any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the half plane containing the point (0, 0) including the line.

The solution region is represented by the shaded region as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: xy ≤ 2

The graphical representation of xy = 2 is given in the figure below.

This line divides the xy-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

0 – 0 ≤ 2 or 0 ≤ 2, which is true

Therefore, the lower half plane is not the solution region of the given inequality. Also, it is clear that any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the half plane containing the point (0, 0) including the line.

The solution region is represented by the shaded region as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: 2x – 3y > 6

The graphical representation of 2x – 3y = 6 is given as dotted line in the figure below. This line divides the xy-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

2(0) – 3(0) > 6 or 0 > 6, which is false

Therefore, the upper half plane is not the solution region of the given inequality. Also, it is clear that any point on the line does not satisfy the given inequality.

Thus, the solution region of the given inequality is the half plane that does not contain the point (0, 0) excluding the line.

The solution region is represented by the shaded region as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: –3x + 2y ≥ –6

The graphical representation of – 3x + 2y = – 6 is given in the figure below.

This line divides the xy-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

– 3(0) + 2(0) ≥ – 6 or 0 ≥ –6, which is true

Therefore, the lower half plane is not the solution region of the given inequality. Also, it is evident that any point on the line satisfies the given inequality.

Thus, the solution region of the given inequality is the half plane containing the point (0, 0) including the line.

The solution region is represented by the shaded region as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: 3y – 5x30

The graphical representation of 3y – 5x = 30 is given as dotted line in the figure below.

This line divides the xy-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

3(0) – 5(0) < 30 or 0 < 30, which is true

Therefore, the upper half plane is not the solution region of the given inequality. Also, it is evident that any point on the line does not satisfy the given inequality.

Thus, the solution region of the given inequality is the half plane containing the point (0, 0) excluding the line.

The solution region is represented by the shaded region as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: y-2

The graphical representation of y = –2 is given as dotted line in the figure below. This line divides the xy-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

0 < –2, which is false

Also, it is evident that any point on the line does not satisfy the given inequality.

Hence, every point below the line, y = –2 (excluding all the points on the line), determines the solution of the given inequality.

The solution region is represented by the shaded region as follows.

Comments

Solve the given inequality graphically in two-dimensional plane: x > –3

The graphical representation of x = –3 is given as dotted line in the figure below. This line divides the xy-plane in two half planes.

Select a point (not on the line), which lies in one of the half planes, to determine whether the point satisfies the given inequality or not.

We select the point as (0, 0).

It is observed that,

0 > –3, which is true

Also, it is evident that any point on the line does not satisfy the given inequality.

Hence, every point on the right side of the line, x = –3 (excluding all the points on the line), determines the solution of the given inequality.

The solution region is represented by the shaded region as follows.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more