UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 12.3 with Free Lessons & Tips

Find the coordinates of the point which divides the line segment joining the points (–2, 3, 5) and (1, –4, 6) in the ratio (i) 2:3 internally, (ii) 2:3 externally.

(i) The coordinates of point R that divides the line segment joining points P (x1, y1, z1) and Q (x2, y2, z2) internally in the ratio m: n are

.

Let R (x, y, z) be the point that divides the line segment joining points(–2, 3, 5) and (1, –4, 6) internally in the ratio 2:3

Thus, the coordinates of the required point are.

(ii) The coordinates of point R that divides the line segment joining points P (x1, y1, z1) and Q (x2, y2, z2) externally in the ratio m: n are

.

Let R (x, y, z) be the point that divides the line segment joining points(–2, 3, 5) and (1, –4, 6) externally in the ratio 2:3

Thus, the coordinates of the required point are (–8, 17, 3).

Comments

Given that P (3, 2, –4), Q (5, 4, –6) and R (9, 8, –10) are collinear. Find the ratio in which Q divides PR.

Let point Q (5, 4, –6) divide the line segment joining points P (3, 2, –4) and R (9, 8, –10) in the ratio k:1.

Therefore, by section formula,

Thus, point Q divides PR in the ratio 1:2.

Comments

Find the ratio in which the YZ-plane divides the line segment formed by joining the points (–2, 4, 7) and (3, –5, 8).

Let the YZ planedivide the line segment joining points (–2, 4, 7) and (3, –5, 8) in the ratio k:1.

Hence, by section formula, the coordinates of point of intersection are given by

On the YZ plane, the x-coordinate of any point is zero.

Thus, the YZ plane divides the line segment formed by joining the given points in the ratio 2:3.

Comments

Using section formula, show that the points A (2, –3, 4), B (–1, 2, 1) and are collinear.

The given points are A (2, –3, 4), B (–1, 2, 1), and.

Let P be a point that divides AB in the ratio k:1.

Hence, by section formula, the coordinates of P are given by

Now, we find the value of k at which point P coincides with point C.

By taking, we obtain k = 2.

For k = 2, the coordinates of point P are.

i.e., is a point that divides AB externally in the ratio 2:1 and is the same as point P.

Hence, points A, B, and C are collinear.

Comments

Find the coordinates of the points which trisect the line segment joining the points P (4, 2, –6) and Q (10, –16, 6).

Let A and B be the points that trisect the line segment joining points P (4, 2, –6) and Q (10, –16, 6)

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by

Point B divides PQ in the ratio 2:1. Therefore, by section formula, the coordinates of point B are given by

Thus, (6, –4, –2) and (8, –10, 2) are the points that trisect the line segment joining points P (4, 2, –6) and Q (10, –16, 6).

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more