UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 11.1 with Free Lessons & Tips

Find the equation of the circle with centre (0, 2) and radius 2

The equation of a circle with centre (h, k) and radius r is given as

(h)2 + (y ­– k)2 = r2

It is given that centre (h, k) = (0, 2) and radius (r) = 2.

Therefore, the equation of the circle is

(x – 0)2 + (y – 2)2 = 22

x2 + y2 + 4 ­– 4 y = 4

x2 + y2 ­– 4y = 0

Comments

Find the equation of the circle with centre (–2, 3) and radius 4

The equation of a circle with centre (h, k) and radius r is given as

(h)2 + (y ­– k)2 = r2

It is given that centre (h, k) = (–2, 3) and radius (r) = 4.

Therefore, the equation of the circle is

(x + 2)2 + (y – 3)2 = (4)2

x2 + 4x + 4 + y2 – 6y + 9 = 16

x2 + y2 + 4x – 6y – 3 = 0

Comments

Find the equation of the circle with centreand radius

The equation of a circle with centre (h, k) and radius r is given as

(h)2 + (y ­– k)2 = r2

It is given that centre (h, k) = and radius (r) =.

Therefore, the equation of the circle is

Comments

Find the equation of the circle with centre (1, 1) and radius

The equation of a circle with centre (h, k) and radius r is given as

(h)2 + (y ­– k)2 = r2

It is given that centre (h, k) = (1, 1) and radius (r) =.

Therefore, the equation of the circle is

Comments

Find the equation of the circle with centre (–a, –b) and radius

The equation of a circle with centre (h, k) and radius r is given as

(h)2 + (y ­– k)2 = r2

It is given that centre (h, k) = (–a, –b) and radius (r) =.

Therefore, the equation of the circle is

Comments

Find the centre and radius of the circle (x + 5)2 + (y – 3)2 = 36

The equation of the given circle is (x + 5)2 + (y – 3)2 = 36.

(x + 5)2 + (y – 3)2 = 36

⇒ {x – (–5)}2 + (y – 3)2 = 62, which is of the form (xh)2 + (yk)2 = r2, where h = –5, k = 3, and r = 6.

Thus, the centre of the given circle is (–5, 3), while its radius is 6.

Comments

Find the centre and radius of the circle x2 + y2 – 4x – 8y – 45 = 0

The equation of the given circle is x2 + y2 – 4x – 8y – 45 = 0.

x2 + y2 – 4x – 8y – 45 = 0

⇒ (x2 – 4x) + (y2 – 8y) = 45

⇒ {x2 – 2(x)(2) + 22} + {y2 – 2(y)(4)+ 42} – 4 –16 = 45

⇒ (x – 2)2 + (y –4)2 = 65

⇒ (x – 2)2 + (y –4)2 = , which is of the form (xh)2 + (yk)2 = r2, where h = 2, k = 4, and .

Thus, the centre of the given circle is (2, 4), while its radius is.

Comments

Find the centre and radius of the circle x2 + y2 – 8x + 10y – 12 = 0

The equation of the given circle is x2 + y2 – 8x + 10y – 12 = 0.

x2 + y2 – 8x + 10y – 12 = 0

⇒ (x2 – 8x) + (y2 + 10y) = 12

⇒ {x2 – 2(x)(4) + 42} + {y2 + 2(y)(5) + 52}– 1625 = 12

⇒ (x – 4)2 + (y + 5)2 = 53

, which is of the form (xh)2 + (yk)2 = r2, where h = 4, k = –5, and .

Thus, the centre of the given circle is (4, –5), while its radius is.

Comments

Find the centre and radius of the circle 2x2 + 2y2x = 0

The equation of the given circle is 2x2 + 2y2x = 0.

, which is of the form (xh)2 + (yk)2 = r2, where h = , k = 0, and .

Thus, the centre of the given circle is, while its radius is.

Comments

Find the equation of the circle passing through the points (4, 1) and (6, 5) and whose centre is on the line 4x + y = 16.

Let the equation of the required circle be (xh)2 + (yk)2 = r2.

Since the circle passes through points (4, 1) and (6, 5),

(4 – h)2 + (1 – k)2 = r2 … (1)

(6 – h)2 + (5 – k)2 = r2 … (2)

Since the centre (h, k) of the circle lies on line 4x + y = 16,

4h + k = 16 … (3)

From equations (1) and (2), we obtain

(4 – h)2 + (1 – k)2 = (6 – h)2 + (5 – k)2

⇒ 16 – 8h + h2 + 1 – 2k + k2 = 36 – 12h + h2 + 25 – 10k + k2

⇒ 16 – 8h + 1 – 2k = 36 – 12h + 25 – 10k

⇒ 4h + 8k = 44

h + 2k = 11 … (4)

On solving equations (3) and (4), we obtain h = 3 and k = 4.

On substituting the values of h and k in equation (1), we obtain

(4 – 3)2 + (1 – 4)2 = r2

⇒ (1)2 + (– 3)2 = r2

⇒ 1 + 9 = r2

r2 = 10

Thus, the equation of the required circle is

(x – 3)2 + (y – 4)2 =

x2 – 6x + 9 + y2 ­– 8y + 16 = 10

x2 + y2 – 6x – 8y + 15 = 0

Comments

Find the equation of the circle passing through the points (2, 3) and (–1, 1) and whose centre is on the line x – 3y – 11 = 0.

Let the equation of the required circle be (xh)2 + (yk)2 = r2.

Since the circle passes through points (2, 3) and (–1, 1),

(2 – h)2 + (3 – k)2 = r2 … (1)

(–1 – h)2 + (1 – k)2 = r2 … (2)

Since the centre (h, k) of the circle lies on line x – 3y – 11 = 0,

h – 3k = 11 … (3)

From equations (1) and (2), we obtain

(2 – h)2 + (3 – k)2 = (–1 – h)2 + (1 – k)2

⇒ 4 – 4h + h2 + 9 – 6k + k2 = 1 + 2h + h2 + 1 – 2k + k2

⇒ 4 – 4h + 9 – 6k = 1 + 2h + 1 – 2k

⇒ 6h + 4k = 11 … (4)

On solving equations (3) and (4), we obtain.

On substituting the values of h and k in equation (1), we obtain

Thus, the equation of the required circle is

Comments

Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point (2, 3).

Let the equation of the required circle be (xh)2 + (yk)2 = r2.

Since the radius of the circle is 5 and its centre lies on the x-axis, k = 0 and r = 5.

Now, the equation of the circle becomes (xh)2 + y2 = 25.

It is given that the circle passes through point (2, 3).

When h = –2, the equation of the circle becomes

(x + 2)2 + y2 = 25

x2 + 4x + 4 + y2 = 25

x2 + y2 + 4x – 21 = 0

When h = 6, the equation of the circle becomes

(x – 6)2 + y2 = 25

x2 – 12x +36 + y2 = 25

x2 + y2 – 12x + 11 = 0

Comments

Find the equation of the circle passing through (0, 0) and making intercepts a and b on the coordinate axes.

Let the equation of the required circle be (x – h)2 + (y – k)2 = r2.

Since the circle passes through (0, 0),

(0 – h)2 + (0 – k)2 = r2

⇒ h2 + k2 = r2

The equation of the circle now becomes (x – h)2 + (y – k)2 = h2 + k2.

It is given that the circle makes intercepts a and b on the coordinate axes. This means that the circle passes through points (a, 0) and (0, b). Therefore,

(a – h)2 + (0 – k)2 = h2 + k2 … (1)

(0 – h)2 + (b – k)2 = h2 + k2 … (2)

From equation (1), we obtain

a2 – 2ah + h2 + k2 = h2 + k2

⇒ a2 – 2ah = 0

⇒ a(a – 2h) = 0

⇒ a = 0 or (a – 2h) = 0

However, a ≠ 0; hence, (a – 2h) = 0 ⇒ h =.

From equation (2), we obtain

h2 + b2 – 2bk + k2 = h2 + k2

⇒ b2 – 2bk = 0

⇒ b(b – 2k) = 0

⇒ b = 0 or(b – 2k) = 0

However, b ≠ 0; hence, (b – 2k) = 0 ⇒ k =.

Thus, the equation of the required circle is

Comments

Find the equation of a circle with centre (2, 2) and passes through the point (4, 5).

The centre of the circle is given as (h, k) = (2, 2).

Since the circle passes through point (4, 5), the radius (r) of the circle is the distance between the points (2, 2) and (4, 5).

Thus, the equation of the circle is

Comments

Does the point (–2.5, 3.5) lie inside, outside or on the circle x2 + y2 = 25?

 

The equation of the given circle is x2 + y2 = 25.

x2 + y2 = 25

⇒ (x – 0)2 + (y – 0)2 = 52, which is of the form (xh)2 + (yk)2 = r2, where h = 0, k = 0, and r = 5.

∴Centre = (0, 0) and radius = 5

Distance between point (–2.5, 3.5) and centre (0, 0)

Since the distance between point (–2.5, 3.5) and centre (0, 0) of the circle is less than the radius of the circle, point (–2.5, 3.5) lies inside the circle.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more