UrbanPro
true

Find the best tutors and institutes for Class 11 Tuition

Find Best Class 11 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 8.2 with Free Lessons & Tips

Find the 13th term in the expansion of.

It is known that (+ 1)th term, (Tr+1), in the binomial expansion of (b)n is given by .

Thus, 13th term in the expansion of is

Comments

Find the coefficient of x5 in  

It is known that (+ 1)th term, (Tr+1), in the binomial expansion of (b)n is given by .

Assuming that x5 occurs in the (r + 1)th term of the expansion (x + 3)8, we obtain

Comparing the indices of x in x5 and in Tr +1, we obtain

r = 3

Thus, the coefficient of x5 is

Comments

Find the coefficient of a5b7 in 

It is known that (+ 1)th term, (Tr+1), in the binomial expansion of (b)n is given by .

Assuming that a5b7 occurs in the (r + 1)th term of the expansion (a – 2b)12, we obtain

Comparing the indices of a and b in a5 band in Tr +1, we obtain

r = 7

Thus, the coefficient of a5b7 is 

Comments

Write the general term in the expansion of

It is known that the general term Tr+1 {which is the (+ 1)th term} in the binomial expansion of (b)n is given by .

Thus, the general term in the expansion of (x2 – y6) is

Comments

Write the general term in the expansion of (x2 – yx)12x ≠ 0

It is known that the general term Tr+1 {which is the (+ 1)th term} in the binomial expansion of (b)n is given by .

Thus, the general term in the expansion of(x2 – yx)12 is

Comments

Find the middle terms in the expansions of 

t is known that in the expansion of (a + b)n, if n is odd, then there are two middle terms, namely, term and term.

Therefore, the middle terms in the expansion of are term and term

Thus, the middle terms in the expansion of are .

Comments

Find the middle terms in the expansions of In the expansion of (1 + a)m + n, prove that coefficients of am and an are equal.

It is known that in the expansion (a + b)n, if n is even, then the middle term is term.

Therefore, the middle term in the expansion of is term

Thus, the middle term in the expansion of is 61236 x5y5.

Comments

The coefficients of the (r – 1)thrth and (r + 1)th terms in the expansion of

(x + 1)n are in the ratio 1:3:5. Find n and r.

t is known that (+ 1)th term, (Tk+1), in the binomial expansion of (b)n is given by .

Therefore, (r – 1)th term in the expansion of (x + 1)n is 

r th term in the expansion of (x + 1)n is 

(r + 1)th term in the expansion of (x + 1)n is 

Therefore, the coefficients of the (r – 1)thrth, and (r + 1)th terms in the expansion of (x + 1)n are  respectively. Since these coefficients are in the ratio 1:3:5, we obtain

Multiplying (1) by 3 and subtracting it from (2), we obtain

4– 12 = 0

⇒ r = 3

Putting the value of r in (1), we obtain

n – 12 + 5 = 0

⇒ n = 7

Thus, = 7 and r = 3

Comments

Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .

It is known that (+ 1)th term, (Tr+1), in the binomial expansion of (b)n is given by .

Assuming that xn occurs in the (r + 1)th term of the expansion of (1 + x)2n, we obtain

Comparing the indices of x in xn and in Tr + 1, we obtain

r = n

Therefore, the coefficient of xn in the expansion of (1 + x)2n is

Assuming that xn occurs in the (k +1)th term of the expansion (1 + x)2– 1, we obtain

Comparing the indices of x in xn and Tk + 1, we obtain

k = n

Therefore, the coefficient of xn in the expansion of (1 + x)2–1 is

From (1) and (2), it is observed that

Therefore, the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1.

Hence, proved.

Comments

Write the general term in the expansion of (x2 – yx)12, x ? 0

It is known that the general term Tr+1 {which is the (+ 1)th term} in the binomial expansion of (b)n is given by .

Thus, the general term in the expansion of(x2 – yx)12 is

Comments

Find a positive value of m for which the coefficient of x2 in the expansion(1 + x)m is 6.

It is known that (+ 1)th term, (Tr+1), in the binomial expansion of (b)n is given by .

Assuming that x2 occurs in the (+ 1)th term of the expansion (1 +x)m, we obtain

Comparing the indices of x in x2 and in Tr + 1, we obtain

r = 2

Therefore, the coefficient of x2 is.

It is given that the coefficient of x2 in the expansion (1 + x)m is 6.

Thus, the positive value of m, for which the coefficient of x2 in the expansion

(1 + x)m is 6, is 4.

Comments

Find the 4th term in the expansion of (x – 2y)12 .

It is known that (+ 1)th term, (Tr+1), in the binomial expansion of (b)n is given by .

Thus, the 4th term in the expansion of (x – 2y)12 is

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 11 Tuition Classes?

Find best tutors for Class 11 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 11 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more