UrbanPro
true

Find the best tutors and institutes for Class 12 Tuition

Find Best Class 12 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Miscellaneous Exercise 3 with Free Lessons & Tips

Find the matrix X so that 

It is given that:

The matrix given on the R.H.S. of the equation is a 2 × 3 matrix and the one given on the L.H.S. of the equation is a 2 × 3 matrix. Therefore, X has to be a 2 × 2 matrix.

Now, let

Therefore, we have:

Equating the corresponding elements of the two matrices, we have:

Thus, a = 1, b = 2, c = −2, d = 0

Hence, the required matrix X is 

Comments

If A and B are square matrices of the same order such that AB = BA, then prove by induction that. Further, prove that for all n ∈ N

We can prove it by mathematical induction.

Comments

Choose the correct answer in the following questions:

If is such that then

A.

B.

C.

D.

C

Comments

If the matrix A is both symmetric and skew symmetric, then

A. A is a diagonal matrix

B. A is a zero matrix

C. A is a square matrix

D. None of these

A is a zero matrix.

Comments

For what values of

We have:

∴4 + 4x = 0

x = −1

Thus, the required value of x is −1.

Comments

If, show that 

It is given that 

Comments

If A is square matrix such that then is equal to

A. A B. I − A C. I D. 3A

Comments

Let, show that, where I is the identity matrix of order 2 and n ∈ 

It is given that

We shall prove the result by using the principle of mathematical induction.

For n = 1, we have:

Therefore, the result is true for n = 1.

Let the result be true for n = k.

That is,

Now, we prove that the result is true for n = k + 1.

Consider

From (1), we have:

Therefore, the result is true for n = k + 1.

Thus, by the principle of mathematical induction, we have:

 

Comments

If, prove that 

It is given that

We shall prove the result by using the principle of mathematical induction.

For n = 1, we have:

Therefore, the result is true for n = 1.

Let the result be true for n = k.

That is

Now, we prove that the result is true for n = k + 1.

Therefore, the result is true for n = k + 1.

Thus by the principle of mathematical induction, we have:

 

Comments

If, then prove where n is any positive integer

It is given that

We shall prove the result by using the principle of mathematical induction.

For n = 1, we have:

Therefore, the result is true for n = 1.

Let the result be true for n = k.

That is,

Now, we prove that the result is true for n = k + 1.

Therefore, the result is true for n = k + 1.

Thus, by the principle of mathematical induction, we have:

 

Comments

If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.

It is given that A and B are symmetric matrices. Therefore, we have:

Thus, (ABBA) is a skew-symmetric matrix.

Comments

Show that the matrix is symmetric or skew symmetric according as A is symmetric or skew symmetric.

We suppose that A is a symmetric matrix, then … (1)

Consider

Thus, if A is a symmetric matrix, thenis a symmetric matrix.

Now, we suppose that A is a skew-symmetric matrix.

Then,

Thus, if A is a skew-symmetric matrix, thenis a skew-symmetric matrix.

Hence, if A is a symmetric or skew-symmetric matrix, thenis a symmetric or skew-symmetric matrix accordingly.

Comments

Find the values of xyz if the matrix satisfy the equation 

Now,

On comparing the corresponding elements, we have:

 

Comments

Find x, if 

We have:



 

Comments

A manufacturer produces three products xyz which he sells in two markets.

Annual sales are indicated below: 

(a) If unit sale prices of xy and are Rs 2.50, Rs 1.50 and Rs 1.00, respectively, find the total revenue in each market with the help of matrix algebra.

(b) If the unit costs of the above three commodities are Rs 2.00, Rs 1.00 and 50 paise respectively. Find the gross profit.

(a) The unit sale prices of x, y, and z are respectively given as Rs 2.50, Rs 1.50, and Rs 1.00.

Consequently, the total revenue in market I can be represented in the form of a matrix as:

The total revenue in market II can be represented in the form of a matrix as:

Therefore, the total revenue in market I isRs 46000 and the same in market II isRs 53000.

(b) The unit cost prices of x, y, and z are respectively given as Rs 2.00, Rs 1.00, and 50 paise.

Consequently, the total cost prices of all the products in market I can be represented in the form of a matrix as:

Since the total revenue in market I isRs 46000, the gross profit in this marketis (Rs 46000 − Rs 31000) Rs 15000.

The total cost prices of all the products in market II can be represented in the form of a matrix as:

Since the total revenue in market II isRs 53000, the gross profit in this market is (Rs 53000 − Rs 36000) Rs 17000.

Comments

Find the matrix X so that 

It is given that:

The matrix given on the R.H.S. of the equation is a 2 × 3 matrix and the one given on the L.H.S. of the equation is a 2 × 3 matrix. Therefore, X has to be a 2 × 2 matrix.

Now, let

Therefore, we have:

Equating the corresponding elements of the two matrices, we have:

Thus, a = 1, b = 2, c = −2, d = 0

Hence, the required matrix X is

Comments

If A and B are square matrices of the same order such that AB = BA, then prove by induction that. Further, prove that for all n ∈ N

A and B are square matrices of the same order such that AB = BA.

For n = 1, we have:

Therefore, the result is true for n = 1.

Let the result be true for n = k.

Now, we prove that the result is true for n = k + 1.

Therefore, the result is true for n = k + 1.

Thus, by the principle of mathematical induction, we have

Now, we prove that for all nN

For n = 1, we have:

Therefore, the result is true for n = 1.

Let the result be true for n = k.

Now, we prove that the result is true for n = k + 1.

Therefore, the result is true for n = k + 1.

Thus, by the principle of mathematical induction, we have, for all natural numbers.

Comments

Choose the correct answer in the following questions:

If is such that then

A.

B.

C.

D.

Answer: C

On comparing the corresponding elements, we have:

 

Comments

If the matrix A is both symmetric and skew symmetric, then

A. A is a diagonal matrix

B. A is a zero matrix

C. A is a square matrix

D. None of these

If A is both symmetric and skew-symmetric matrix, then we should have

Therefore, A is a zero matrix.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 12 Tuition Classes?

Find best tutors for Class 12 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 12 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more