Solve
√(x/y)= 4
(1/x)+(1/y)= 1/(xy)
Solution
√(x/y)=4
Squaring both sides
x/y=16
x=16y
x-16y=0 <-eqn1
(1/x)+(1/y)=1/(xy)
((y+x)/xy)=(1/xy)
x+y=1 <-eqn2
Multiply by 16
16x+16y=16 eqn3
x-16y=0 eqn1
Adding both eqns
17x=16
x= 16/17
x+y=1
(16/17)+y=1
y=1-(16/17)
y=1/17
Answers
x=16/17, y=1/17