Guduvanchery, Chengalpattu, India - 603202.
Details verified of Vignesh✕
Identity
Education
Know how UrbanPro verifies Tutor details
Identity is verified based on matching the details uploaded by the Tutor with government databases.
Tamil Mother Tongue (Native)
English Proficient
Crescent college 2019
Master of Computer Applications (M.C.A.)
Guduvanchery, Chengalpattu, India - 603202
Phone Verified
Email Verified
Report this Profile
Is this listing inaccurate or duplicate? Any other problem?
Please tell us about the problem and we will fix it.
Class Location
Online Classes (Video Call via UrbanPro LIVE)
Student's Home
Tutor's Home
Years of Experience in Python Training classes
6
Course Duration provided
1-3 months
Seeker background catered to
Individual, Corporate company, Educational Institution
Certification provided
Yes
Python applications taught
Core Python
1. Which classes do you teach?
I teach Python Training Class.
2. Do you provide a demo class?
Yes, I provide a free demo class.
3. How many years of experience do you have?
I have been teaching for 6 years.
Answered 2 hrs ago Learn IT Courses/Programming Languages/Python
Python has a vast collection of modules that make it a powerful and versatile language. Here are some of the most interesting and useful Python modules across different domains:
os
– Interact with the operating system (file management, environment variables).sys
– Work with system-specific parameters (command-line arguments, exit status).datetime
– Handle dates and times.random
– Generate random numbers, shuffle lists, or pick random choices.math
– Perform mathematical operations (trigonometry, logarithms, factorials).statistics
– Compute mean, median, variance, and other statistics.re
– Regular expressions for pattern matching.json
– Encode and decode JSON data.csv
– Read and write CSV files.collections
– Advanced data structures (Counter, defaultdict, OrderedDict).itertools
– Efficient looping and combinatorics.pdb
– Python debugger for interactive debugging.unittest
– Built-in framework for unit testing.requests
– Send HTTP requests (GET, POST) to APIs and web pages.BeautifulSoup
– Scrape and parse HTML/XML data from websites.selenium
– Automate web browsers (filling forms, clicking buttons).πΉ Example: Fetching a webpage
import requests response = requests.get("https://www.python.org") print(response.status_code) # 200 (OK)
numpy
– Handle large numerical computations efficiently.pandas
– Work with tabular data (Excel, CSV, SQL).matplotlib
– Create visualizations (line plots, bar charts, scatter plots).seaborn
– High-level statistical visualizations.scikit-learn
– Machine learning algorithms (classification, regression).tensorflow
/pytorch
– Deep learning frameworks for AI.πΉ Example: Basic Pandas DataFrame
import pandas as pd data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]} df = pd.DataFrame(data) print(df)
Flask
– Lightweight web framework for REST APIs.Django
– Full-stack web framework for large applications.fastapi
– High-performance API framework.πΉ Example: Flask Web App
from flask import Flask app = Flask(__name__) @app.route("/") def home(): return "Hello, World!" app.run(debug=True)
shutil
– Manage files and directories (copy, move, delete).pyautogui
– Control the mouse and keyboard for automation.schedule
– Schedule tasks to run automatically.πΉ Example: Automating Keystrokes with PyAutoGUI
import pyautogui pyautogui.write("Hello, World!", interval=0.1)
hashlib
– Generate secure hashes (SHA256, MD5).cryptography
– Encrypt and decrypt data.scapy
– Packet sniffing and network security testing.πΉ Example: SHA256 Hashing
import hashlib hash_value = hashlib.sha256(b"password").hexdigest() print(hash_value)
pygame
– Create 2D games.turtle
– Simple graphics for beginners.opencv
– Computer vision and image processing.πΉ Example: Drawing a Square with Turtle
import turtle t = turtle.Turtle() for _ in range(4): t.forward(100) t.right(90) turtle.done()
nltk
– Process human language data.spaCy
– Efficient NLP library.transformers
(Hugging Face) – Use pre-trained AI models.πΉ Example: Tokenizing Text with NLTK
import nltk from nltk.tokenize import word_tokenize nltk.download('punkt') text = "Hello, how are you?" print(word_tokenize(text))
tkinter
– Built-in module for GUI applications.PyQt
– Advanced GUI applications.Kivy
– Cross-platform mobile and desktop apps.πΉ Example: Simple Tkinter Window
import tkinter as tk root = tk.Tk() root.title("Hello, GUI!") tk.Label(root, text="Welcome to Tkinter!").pack() root.mainloop()
boto3
– Amazon AWS SDK for Python.docker
– Manage Docker containers with Python.fabric
– Automate remote server administration.πΉ Example: Upload File to S3 using Boto3
import boto3 s3 = boto3.client('s3') s3.upload_file('local_file.txt', 'my-bucket', 's3_file.txt')
Python has an amazing ecosystem of modules that make it a go-to language for various fields, including: β
Web Development
β
Data Science & AI
β
Automation
β
Cybersecurity
β
Game Development
Answered 5 hrs ago Learn IT Courses/Programming Languages/Python
The learning stages of Python can be divided into three main levels: Beginner, Intermediate, and Advanced. Here's a structured roadmap:
Introduction to Python
Basic Syntax and Operations
int
, float
, str
, bool
)print()
, input()
)+
, -
, *
, /
, %
, **
, //
)Control Flow
if
, elif
, else
)for
, while
)break
, continue
, pass
)Functions and Modules
def my_function()
)import math
, random
)Basic Data Structures
[]
) – Methods (append()
, pop()
, sort()
)()
) – Immutable collections{}
) – Unordered unique elements{key: value}
) – Key-value pairsBasic File Handling
open()
, read()
, write()
, close()
)'r'
, 'w'
, 'a'
)Basic Error Handling
try-except
)IndexError
, TypeError
, KeyError
)β
Simple Calculator
β
To-Do List
β
Rock-Paper-Scissors Game
β
Basic Data Analysis with pandas
Advanced Data Structures
collections
(Counter, DefaultDict, OrderedDict)Object-Oriented Programming (OOP)
__init__
)Working with External Libraries
requests
(API Calls)json
(Parsing JSON)pandas
(Data Analysis)matplotlib
(Data Visualization)Exception Handling (Advanced)
raise
)try-except-else-finally
Regular Expressions (re
module)
Multithreading and Multiprocessing
β
Web Scraper using BeautifulSoup
β
Weather App using API (requests
)
β
Data Analysis using pandas
β
Chatbot using NLTK
Advanced OOP Concepts
Database Handling
sqlite3
, MySQL
)MongoDB
with pymongo
)Web Development with Python
Data Science and Machine Learning
numpy
and pandas
matplotlib
and seaborn
scikit-learn
Automation and Scripting
os
and shutil
selenium
for Web AutomationTesting and Debugging
unittest
, pytest
)pdb
Deployment and Cloud Integration
β
REST API for a To-Do App
β
AI-Powered Chatbot
β
Machine Learning Model for Predictions
β
Full-Stack Web Application with Django
Answered 5 hrs ago Learn IT Courses/Programming Languages/Python
Artificial Intelligence (AI) is predominantly driven by Python rather than C++ due to several key reasons:
Python is dominant in AI because it prioritizes developer efficiency, rapid prototyping, and a rich ecosystem, while C++ is used when performance is critical. Many AI libraries combine both—leveraging C++ for speed and Python for usability.
Answered 5 hrs ago Learn IT Courses/Programming Languages/Python
A beginner’s guide to Python programming typically covers the fundamental concepts and syntax necessary to start coding in Python. Here’s a structured roadmap to learning Python from scratch:
print("Hello, World!")
)int
, float
, str
, bool
)str()
, int()
, float()
)+
, -
, *
, /
, //
, %
, **
)==
, !=
, >
, <
, >=
, <=
)and
, or
, not
)=
, +=
, -=
, etc.)if
, elif
, else
)for
Loopwhile
Loopbreak
, continue
, pass
)def my_function():
)len()
, type()
, range()
, input()
)import math
, from random import randint
)[]
- Ordered, Mutable)()
- Ordered, Immutable){}
- Unordered, Unique Elements){key: value}
- Key-Value Pairs)s[0]
, s[:5]
)upper()
, lower()
, split()
, join()
, replace()
).format()
, %
formatting)open()
, read()
, write()
, close()
)'r'
, 'w'
, 'a'
, 'r+'
)with
Statement for File HandlingSyntaxError
, TypeError
, IndexError
)try
, except
, finally
for Handling Errors__init__
method)numpy
, pandas
, matplotlib
)pandas
Class Location
Online Classes (Video Call via UrbanPro LIVE)
Student's Home
Tutor's Home
Years of Experience in Python Training classes
6
Course Duration provided
1-3 months
Seeker background catered to
Individual, Corporate company, Educational Institution
Certification provided
Yes
Python applications taught
Core Python
Answered 2 hrs ago Learn IT Courses/Programming Languages/Python
Python has a vast collection of modules that make it a powerful and versatile language. Here are some of the most interesting and useful Python modules across different domains:
os
– Interact with the operating system (file management, environment variables).sys
– Work with system-specific parameters (command-line arguments, exit status).datetime
– Handle dates and times.random
– Generate random numbers, shuffle lists, or pick random choices.math
– Perform mathematical operations (trigonometry, logarithms, factorials).statistics
– Compute mean, median, variance, and other statistics.re
– Regular expressions for pattern matching.json
– Encode and decode JSON data.csv
– Read and write CSV files.collections
– Advanced data structures (Counter, defaultdict, OrderedDict).itertools
– Efficient looping and combinatorics.pdb
– Python debugger for interactive debugging.unittest
– Built-in framework for unit testing.requests
– Send HTTP requests (GET, POST) to APIs and web pages.BeautifulSoup
– Scrape and parse HTML/XML data from websites.selenium
– Automate web browsers (filling forms, clicking buttons).πΉ Example: Fetching a webpage
import requests response = requests.get("https://www.python.org") print(response.status_code) # 200 (OK)
numpy
– Handle large numerical computations efficiently.pandas
– Work with tabular data (Excel, CSV, SQL).matplotlib
– Create visualizations (line plots, bar charts, scatter plots).seaborn
– High-level statistical visualizations.scikit-learn
– Machine learning algorithms (classification, regression).tensorflow
/pytorch
– Deep learning frameworks for AI.πΉ Example: Basic Pandas DataFrame
import pandas as pd data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]} df = pd.DataFrame(data) print(df)
Flask
– Lightweight web framework for REST APIs.Django
– Full-stack web framework for large applications.fastapi
– High-performance API framework.πΉ Example: Flask Web App
from flask import Flask app = Flask(__name__) @app.route("/") def home(): return "Hello, World!" app.run(debug=True)
shutil
– Manage files and directories (copy, move, delete).pyautogui
– Control the mouse and keyboard for automation.schedule
– Schedule tasks to run automatically.πΉ Example: Automating Keystrokes with PyAutoGUI
import pyautogui pyautogui.write("Hello, World!", interval=0.1)
hashlib
– Generate secure hashes (SHA256, MD5).cryptography
– Encrypt and decrypt data.scapy
– Packet sniffing and network security testing.πΉ Example: SHA256 Hashing
import hashlib hash_value = hashlib.sha256(b"password").hexdigest() print(hash_value)
pygame
– Create 2D games.turtle
– Simple graphics for beginners.opencv
– Computer vision and image processing.πΉ Example: Drawing a Square with Turtle
import turtle t = turtle.Turtle() for _ in range(4): t.forward(100) t.right(90) turtle.done()
nltk
– Process human language data.spaCy
– Efficient NLP library.transformers
(Hugging Face) – Use pre-trained AI models.πΉ Example: Tokenizing Text with NLTK
import nltk from nltk.tokenize import word_tokenize nltk.download('punkt') text = "Hello, how are you?" print(word_tokenize(text))
tkinter
– Built-in module for GUI applications.PyQt
– Advanced GUI applications.Kivy
– Cross-platform mobile and desktop apps.πΉ Example: Simple Tkinter Window
import tkinter as tk root = tk.Tk() root.title("Hello, GUI!") tk.Label(root, text="Welcome to Tkinter!").pack() root.mainloop()
boto3
– Amazon AWS SDK for Python.docker
– Manage Docker containers with Python.fabric
– Automate remote server administration.πΉ Example: Upload File to S3 using Boto3
import boto3 s3 = boto3.client('s3') s3.upload_file('local_file.txt', 'my-bucket', 's3_file.txt')
Python has an amazing ecosystem of modules that make it a go-to language for various fields, including: β
Web Development
β
Data Science & AI
β
Automation
β
Cybersecurity
β
Game Development
Answered 5 hrs ago Learn IT Courses/Programming Languages/Python
The learning stages of Python can be divided into three main levels: Beginner, Intermediate, and Advanced. Here's a structured roadmap:
Introduction to Python
Basic Syntax and Operations
int
, float
, str
, bool
)print()
, input()
)+
, -
, *
, /
, %
, **
, //
)Control Flow
if
, elif
, else
)for
, while
)break
, continue
, pass
)Functions and Modules
def my_function()
)import math
, random
)Basic Data Structures
[]
) – Methods (append()
, pop()
, sort()
)()
) – Immutable collections{}
) – Unordered unique elements{key: value}
) – Key-value pairsBasic File Handling
open()
, read()
, write()
, close()
)'r'
, 'w'
, 'a'
)Basic Error Handling
try-except
)IndexError
, TypeError
, KeyError
)β
Simple Calculator
β
To-Do List
β
Rock-Paper-Scissors Game
β
Basic Data Analysis with pandas
Advanced Data Structures
collections
(Counter, DefaultDict, OrderedDict)Object-Oriented Programming (OOP)
__init__
)Working with External Libraries
requests
(API Calls)json
(Parsing JSON)pandas
(Data Analysis)matplotlib
(Data Visualization)Exception Handling (Advanced)
raise
)try-except-else-finally
Regular Expressions (re
module)
Multithreading and Multiprocessing
β
Web Scraper using BeautifulSoup
β
Weather App using API (requests
)
β
Data Analysis using pandas
β
Chatbot using NLTK
Advanced OOP Concepts
Database Handling
sqlite3
, MySQL
)MongoDB
with pymongo
)Web Development with Python
Data Science and Machine Learning
numpy
and pandas
matplotlib
and seaborn
scikit-learn
Automation and Scripting
os
and shutil
selenium
for Web AutomationTesting and Debugging
unittest
, pytest
)pdb
Deployment and Cloud Integration
β
REST API for a To-Do App
β
AI-Powered Chatbot
β
Machine Learning Model for Predictions
β
Full-Stack Web Application with Django
Answered 5 hrs ago Learn IT Courses/Programming Languages/Python
Artificial Intelligence (AI) is predominantly driven by Python rather than C++ due to several key reasons:
Python is dominant in AI because it prioritizes developer efficiency, rapid prototyping, and a rich ecosystem, while C++ is used when performance is critical. Many AI libraries combine both—leveraging C++ for speed and Python for usability.
Answered 5 hrs ago Learn IT Courses/Programming Languages/Python
A beginner’s guide to Python programming typically covers the fundamental concepts and syntax necessary to start coding in Python. Here’s a structured roadmap to learning Python from scratch:
print("Hello, World!")
)int
, float
, str
, bool
)str()
, int()
, float()
)+
, -
, *
, /
, //
, %
, **
)==
, !=
, >
, <
, >=
, <=
)and
, or
, not
)=
, +=
, -=
, etc.)if
, elif
, else
)for
Loopwhile
Loopbreak
, continue
, pass
)def my_function():
)len()
, type()
, range()
, input()
)import math
, from random import randint
)[]
- Ordered, Mutable)()
- Ordered, Immutable){}
- Unordered, Unique Elements){key: value}
- Key-Value Pairs)s[0]
, s[:5]
)upper()
, lower()
, split()
, join()
, replace()
).format()
, %
formatting)open()
, read()
, write()
, close()
)'r'
, 'w'
, 'a'
, 'r+'
)with
Statement for File HandlingSyntaxError
, TypeError
, IndexError
)try
, except
, finally
for Handling Errors__init__
method)numpy
, pandas
, matplotlib
)pandas
Reply to 's review
Enter your reply*
Your reply has been successfully submitted.
Certified
The Certified badge indicates that the Tutor has received good amount of positive feedback from Students.